MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnon0 Structured version   Visualization version   Unicode version

Theorem wwlksnon0 26812
Description: Conditions for a set of walks of a fixed length between two vertices to be empty. (Contributed by AV, 15-May-2021.) (Proof shortened by AV, 21-May-2021.)
Hypothesis
Ref Expression
wwlksnon0.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
wwlksnon0  |-  ( -.  ( ( N  e. 
NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
)  ->  ( A
( N WWalksNOn  G ) B )  =  (/) )

Proof of Theorem wwlksnon0
Dummy variables  a 
b  g  n  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-wwlksnon 26724 . 2  |- WWalksNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) } ) )
2 wwlksnon0.v . . 3  |-  V  =  (Vtx `  G )
32wwlksnon 26738 . 2  |-  ( ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WWalksNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( N WWalksN  G )  |  ( ( w `
 0 )  =  a  /\  ( w `
 N )  =  b ) } ) )
41, 32mpt20 6882 1  |-  ( -.  ( ( N  e. 
NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
)  ->  ( A
( N WWalksNOn  G ) B )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   NN0cn0 11292  Vtxcvtx 25874   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wwlksnon 26724
This theorem is referenced by:  wwlksnonfi  26816
  Copyright terms: Public domain W3C validator