MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthsnon Structured version   Visualization version   Unicode version

Theorem iswspthsnon 26741
Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.)
Hypothesis
Ref Expression
iswwlksnon.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
iswspthsnon  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WSPathsNOn  G ) B )  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G
) B ) w } )
Distinct variable groups:    w, A    w, B    w, G    w, N    A, f, w    B, f    f, G    f, N
Allowed substitution hints:    V( w, f)

Proof of Theorem iswspthsnon
Dummy variables  a 
b  g  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswwlksnon.v . . . . . 6  |-  V  =  (Vtx `  G )
21wspthsnon 26739 . . . . 5  |-  ( ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WSPathsNOn  G )  =  ( a  e.  V ,  b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G
) b ) w } ) )
32adantr 481 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( N WSPathsNOn  G )  =  ( a  e.  V , 
b  e.  V  |->  { w  e.  ( a ( N WWalksNOn  G )
b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }
) )
4 oveq12 6659 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a ( N WWalksNOn  G ) b )  =  ( A ( N WWalksNOn  G ) B ) )
5 oveq12 6659 . . . . . . . 8  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a (SPathsOn `  G
) b )  =  ( A (SPathsOn `  G
) B ) )
65breqd 4664 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f ( a (SPathsOn `  G )
b ) w  <->  f ( A (SPathsOn `  G ) B ) w ) )
76exbidv 1850 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( E. f  f ( a (SPathsOn `  G
) b ) w  <->  E. f  f ( A (SPathsOn `  G ) B ) w ) )
84, 7rabeqbidv 3195 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  { w  e.  ( a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
)
98adantl 482 . . . 4  |-  ( ( ( ( N  e. 
NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
)  /\  ( a  =  A  /\  b  =  B ) )  ->  { w  e.  (
a ( N WWalksNOn  G ) b )  |  E. f  f ( a (SPathsOn `  G )
b ) w }  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
)
10 simprl 794 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  A  e.  V )
11 simprr 796 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  B  e.  V )
12 ovex 6678 . . . . . 6  |-  ( A ( N WWalksNOn  G ) B )  e.  _V
1312rabex 4813 . . . . 5  |-  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G
) B ) w }  e.  _V
1413a1i 11 . . . 4  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G
) B ) w }  e.  _V )
153, 9, 10, 11, 14ovmpt2d 6788 . . 3  |-  ( ( ( N  e.  NN0  /\  G  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( N WSPathsNOn  G ) B )  =  {
w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
)
1615ex 450 . 2  |-  ( ( N  e.  NN0  /\  G  e.  _V )  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WSPathsNOn  G ) B )  =  {
w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
) )
17 0ov 6682 . . . 4  |-  ( A
(/) B )  =  (/)
18 df-wspthsnon 26726 . . . . . 6  |- WSPathsNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( a ( n WWalksNOn  g ) b )  |  E. f  f ( a (SPathsOn `  g
) b ) w } ) )
1918mpt2ndm0 6875 . . . . 5  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WSPathsNOn  G )  =  (/) )
2019oveqd 6667 . . . 4  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( A ( N WSPathsNOn  G ) B )  =  ( A (/) B ) )
21 df-wwlksnon 26724 . . . . . . . . 9  |- WWalksNOn  =  ( n  e.  NN0 , 
g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { w  e.  ( n WWalksN  g )  |  ( ( w `
 0 )  =  a  /\  ( w `
 n )  =  b ) } ) )
2221mpt2ndm0 6875 . . . . . . . 8  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( N WWalksNOn  G )  =  (/) )
2322oveqd 6667 . . . . . . 7  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( A ( N WWalksNOn  G ) B )  =  ( A (/) B ) )
2423, 17syl6eq 2672 . . . . . 6  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( A ( N WWalksNOn  G ) B )  =  (/) )
2524rabeqdv 3194 . . . . 5  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }  =  { w  e.  (/)  |  E. f  f ( A (SPathsOn `  G
) B ) w } )
26 rab0 3955 . . . . 5  |-  { w  e.  (/)  |  E. f 
f ( A (SPathsOn `  G ) B ) w }  =  (/)
2725, 26syl6eq 2672 . . . 4  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }  =  (/) )
2817, 20, 273eqtr4a 2682 . . 3  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( A ( N WSPathsNOn  G ) B )  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G
) B ) w } )
2928a1d 25 . 2  |-  ( -.  ( N  e.  NN0  /\  G  e.  _V )  ->  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WSPathsNOn  G ) B )  =  {
w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G ) B ) w }
) )
3016, 29pm2.61i 176 1  |-  ( ( A  e.  V  /\  B  e.  V )  ->  ( A ( N WSPathsNOn  G ) B )  =  { w  e.  ( A ( N WWalksNOn  G ) B )  |  E. f  f ( A (SPathsOn `  G
) B ) w } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {crab 2916   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   NN0cn0 11292  Vtxcvtx 25874  SPathsOncspthson 26611   WWalksN cwwlksn 26718   WWalksNOn cwwlksnon 26719   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wwlksnon 26724  df-wspthsnon 26726
This theorem is referenced by:  wspthnon  26743  wpthswwlks2on  26854
  Copyright terms: Public domain W3C validator