| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfif5 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of
the conditional operator df-if 4087. Note that
|
| Ref | Expression |
|---|---|
| dfif3.1 |
|
| Ref | Expression |
|---|---|
| dfif5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindi 3830 |
. 2
| |
| 2 | dfif3.1 |
. . 3
| |
| 3 | 2 | dfif4 4101 |
. 2
|
| 4 | undir 3876 |
. . 3
| |
| 5 | unidm 3756 |
. . . . . . . 8
| |
| 6 | 5 | uneq1i 3763 |
. . . . . . 7
|
| 7 | unass 3770 |
. . . . . . 7
| |
| 8 | undi 3874 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | 3eqtr3ri 2653 |
. . . . . 6
|
| 10 | undi 3874 |
. . . . . . . 8
| |
| 11 | undifabs 4045 |
. . . . . . . . 9
| |
| 12 | 11 | ineq1i 3810 |
. . . . . . . 8
|
| 13 | inabs 3855 |
. . . . . . . 8
| |
| 14 | 10, 12, 13 | 3eqtri 2648 |
. . . . . . 7
|
| 15 | undif2 4044 |
. . . . . . . . 9
| |
| 16 | 15 | ineq1i 3810 |
. . . . . . . 8
|
| 17 | undi 3874 |
. . . . . . . 8
| |
| 18 | 16, 17, 8 | 3eqtr4i 2654 |
. . . . . . 7
|
| 19 | 14, 18 | uneq12i 3765 |
. . . . . 6
|
| 20 | 9, 19 | eqtr4i 2647 |
. . . . 5
|
| 21 | unundi 3774 |
. . . . 5
| |
| 22 | 20, 21 | eqtr4i 2647 |
. . . 4
|
| 23 | unass 3770 |
. . . . . 6
| |
| 24 | undi 3874 |
. . . . . . . . 9
| |
| 25 | uncom 3757 |
. . . . . . . . 9
| |
| 26 | undif2 4044 |
. . . . . . . . . 10
| |
| 27 | 26 | ineq1i 3810 |
. . . . . . . . 9
|
| 28 | 24, 25, 27 | 3eqtr4i 2654 |
. . . . . . . 8
|
| 29 | undi 3874 |
. . . . . . . 8
| |
| 30 | 28, 29 | eqtr4i 2647 |
. . . . . . 7
|
| 31 | undi 3874 |
. . . . . . . 8
| |
| 32 | undifabs 4045 |
. . . . . . . . 9
| |
| 33 | 32 | ineq1i 3810 |
. . . . . . . 8
|
| 34 | inabs 3855 |
. . . . . . . 8
| |
| 35 | 31, 33, 34 | 3eqtrri 2649 |
. . . . . . 7
|
| 36 | 30, 35 | uneq12i 3765 |
. . . . . 6
|
| 37 | unidm 3756 |
. . . . . . 7
| |
| 38 | 37 | uneq2i 3764 |
. . . . . 6
|
| 39 | 23, 36, 38 | 3eqtr3ri 2653 |
. . . . 5
|
| 40 | uncom 3757 |
. . . . . . 7
| |
| 41 | 40 | ineq2i 3811 |
. . . . . 6
|
| 42 | undir 3876 |
. . . . . 6
| |
| 43 | 41, 42 | eqtr4i 2647 |
. . . . 5
|
| 44 | unundi 3774 |
. . . . 5
| |
| 45 | 39, 43, 44 | 3eqtr4i 2654 |
. . . 4
|
| 46 | 22, 45 | ineq12i 3812 |
. . 3
|
| 47 | 4, 46 | eqtr4i 2647 |
. 2
|
| 48 | 1, 3, 47 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |