MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfif4 Structured version   Visualization version   Unicode version

Theorem dfif4 4101
Description: Alternate definition of the conditional operator df-if 4087. Note that  ph is independent of  x i.e. a constant true or false. (Contributed by NM, 25-Aug-2013.)
Hypothesis
Ref Expression
dfif3.1  |-  C  =  { x  |  ph }
Assertion
Ref Expression
dfif4  |-  if (
ph ,  A ,  B )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
Distinct variable group:    ph, x
Allowed substitution hints:    A( x)    B( x)    C( x)

Proof of Theorem dfif4
StepHypRef Expression
1 dfif3.1 . . 3  |-  C  =  { x  |  ph }
21dfif3 4100 . 2  |-  if (
ph ,  A ,  B )  =  ( ( A  i^i  C
)  u.  ( B  i^i  ( _V  \  C ) ) )
3 undir 3876 . 2  |-  ( ( A  i^i  C )  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )
4 undi 3874 . . . 4  |-  ( A  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( A  u.  B
)  i^i  ( A  u.  ( _V  \  C
) ) )
5 undi 3874 . . . . 5  |-  ( C  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( ( C  u.  B
)  i^i  ( C  u.  ( _V  \  C
) ) )
6 uncom 3757 . . . . . 6  |-  ( C  u.  B )  =  ( B  u.  C
)
7 unvdif 4042 . . . . . 6  |-  ( C  u.  ( _V  \  C ) )  =  _V
86, 7ineq12i 3812 . . . . 5  |-  ( ( C  u.  B )  i^i  ( C  u.  ( _V  \  C ) ) )  =  ( ( B  u.  C
)  i^i  _V )
9 inv1 3970 . . . . 5  |-  ( ( B  u.  C )  i^i  _V )  =  ( B  u.  C
)
105, 8, 93eqtri 2648 . . . 4  |-  ( C  u.  ( B  i^i  ( _V  \  C ) ) )  =  ( B  u.  C )
114, 10ineq12i 3812 . . 3  |-  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )  =  ( ( ( A  u.  B )  i^i  ( A  u.  ( _V  \  C ) ) )  i^i  ( B  u.  C ) )
12 inass 3823 . . 3  |-  ( ( ( A  u.  B
)  i^i  ( A  u.  ( _V  \  C
) ) )  i^i  ( B  u.  C
) )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
1311, 12eqtri 2644 . 2  |-  ( ( A  u.  ( B  i^i  ( _V  \  C ) ) )  i^i  ( C  u.  ( B  i^i  ( _V  \  C ) ) ) )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
142, 3, 133eqtri 2648 1  |-  if (
ph ,  A ,  B )  =  ( ( A  u.  B
)  i^i  ( ( A  u.  ( _V  \  C ) )  i^i  ( B  u.  C
) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   {cab 2608   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087
This theorem is referenced by:  dfif5  4102
  Copyright terms: Public domain W3C validator