MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiunv2 Structured version   Visualization version   Unicode version

Theorem dfiunv2 4556
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.)
Assertion
Ref Expression
dfiunv2  |-  U_ x  e.  A  U_ y  e.  B  C  =  {
z  |  E. x  e.  A  E. y  e.  B  z  e.  C }
Distinct variable groups:    x, z    y, z    z, A    z, B    z, C
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)

Proof of Theorem dfiunv2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-iun 4522 . . . 4  |-  U_ y  e.  B  C  =  { w  |  E. y  e.  B  w  e.  C }
21a1i 11 . . 3  |-  ( x  e.  A  ->  U_ y  e.  B  C  =  { w  |  E. y  e.  B  w  e.  C } )
32iuneq2i 4539 . 2  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ x  e.  A  {
w  |  E. y  e.  B  w  e.  C }
4 df-iun 4522 . 2  |-  U_ x  e.  A  { w  |  E. y  e.  B  w  e.  C }  =  { z  |  E. x  e.  A  z  e.  { w  |  E. y  e.  B  w  e.  C } }
5 vex 3203 . . . . 5  |-  z  e. 
_V
6 eleq1 2689 . . . . . 6  |-  ( w  =  z  ->  (
w  e.  C  <->  z  e.  C ) )
76rexbidv 3052 . . . . 5  |-  ( w  =  z  ->  ( E. y  e.  B  w  e.  C  <->  E. y  e.  B  z  e.  C ) )
85, 7elab 3350 . . . 4  |-  ( z  e.  { w  |  E. y  e.  B  w  e.  C }  <->  E. y  e.  B  z  e.  C )
98rexbii 3041 . . 3  |-  ( E. x  e.  A  z  e.  { w  |  E. y  e.  B  w  e.  C }  <->  E. x  e.  A  E. y  e.  B  z  e.  C )
109abbii 2739 . 2  |-  { z  |  E. x  e.  A  z  e.  {
w  |  E. y  e.  B  w  e.  C } }  =  {
z  |  E. x  e.  A  E. y  e.  B  z  e.  C }
113, 4, 103eqtri 2648 1  |-  U_ x  e.  A  U_ y  e.  B  C  =  {
z  |  E. x  e.  A  E. y  e.  B  z  e.  C }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  wspniunwspnon  26819  fusgr2wsp2nb  27198
  Copyright terms: Public domain W3C validator