MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgr2wsp2nb Structured version   Visualization version   Unicode version

Theorem fusgr2wsp2nb 27198
Description: The set of paths of length 2 with a given vertex in the middle for a finite simple graph is the union of all paths of length 2 from one neighbor to another neighbor of this vertex via this vertex. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 8-Jan-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v  |-  V  =  (Vtx `  G )
fusgreg2wsp.m  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
Assertion
Ref Expression
fusgr2wsp2nb  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( M `  N )  =  U_ x  e.  ( G NeighbVtx  N ) U_ y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) { <" x N y "> } )
Distinct variable groups:    G, a    V, a    w, G    N, a, w    x, G, y   
x, N, y    x, V, y
Allowed substitution hints:    M( x, y, w, a)    V( w)

Proof of Theorem fusgr2wsp2nb
Dummy variables  m  z  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrhash2wsp.v . . . . . 6  |-  V  =  (Vtx `  G )
2 fusgreg2wsp.m . . . . . 6  |-  M  =  ( a  e.  V  |->  { w  e.  ( 2 WSPathsN  G )  |  ( w `  1 )  =  a } )
31, 2fusgreg2wsplem 27197 . . . . 5  |-  ( N  e.  V  ->  (
z  e.  ( M `
 N )  <->  ( z  e.  ( 2 WSPathsN  G )  /\  ( z ` 
1 )  =  N ) ) )
43adantl 482 . . . 4  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
z  e.  ( M `
 N )  <->  ( z  e.  ( 2 WSPathsN  G )  /\  ( z ` 
1 )  =  N ) ) )
5 2nn0 11309 . . . . . . . . 9  |-  2  e.  NN0
61wspthsnwspthsnon 26811 . . . . . . . . 9  |-  ( ( 2  e.  NN0  /\  G  e. FinUSGraph  )  ->  (
z  e.  ( 2 WSPathsN  G )  <->  E. x  e.  V  E. y  e.  V  z  e.  ( x ( 2 WSPathsNOn  G ) y ) ) )
75, 6mpan 706 . . . . . . . 8  |-  ( G  e. FinUSGraph  ->  ( z  e.  ( 2 WSPathsN  G )  <->  E. x  e.  V  E. y  e.  V  z  e.  ( x
( 2 WSPathsNOn  G )
y ) ) )
87adantr 481 . . . . . . 7  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
z  e.  ( 2 WSPathsN  G )  <->  E. x  e.  V  E. y  e.  V  z  e.  ( x ( 2 WSPathsNOn  G ) y ) ) )
9 fusgrusgr 26214 . . . . . . . . . 10  |-  ( G  e. FinUSGraph  ->  G  e. USGraph  )
109adantr 481 . . . . . . . . 9  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  G  e. USGraph  )
11 eqid 2622 . . . . . . . . . 10  |-  (Edg `  G )  =  (Edg
`  G )
121, 11usgr2wspthon 26858 . . . . . . . . 9  |-  ( ( G  e. USGraph  /\  (
x  e.  V  /\  y  e.  V )
)  ->  ( z  e.  ( x ( 2 WSPathsNOn  G ) y )  <->  E. m  e.  V  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) )
1310, 12sylan 488 . . . . . . . 8  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
x  e.  V  /\  y  e.  V )
)  ->  ( z  e.  ( x ( 2 WSPathsNOn  G ) y )  <->  E. m  e.  V  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) )
14132rexbidva 3056 . . . . . . 7  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( E. x  e.  V  E. y  e.  V  z  e.  ( x
( 2 WSPathsNOn  G )
y )  <->  E. x  e.  V  E. y  e.  V  E. m  e.  V  ( (
z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg
`  G )  /\  { m ,  y }  e.  (Edg `  G
) ) ) ) )
158, 14bitrd 268 . . . . . 6  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
z  e.  ( 2 WSPathsN  G )  <->  E. x  e.  V  E. y  e.  V  E. m  e.  V  ( (
z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg
`  G )  /\  { m ,  y }  e.  (Edg `  G
) ) ) ) )
1615anbi1d 741 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( z  e.  ( 2 WSPathsN  G )  /\  (
z `  1 )  =  N )  <->  ( E. x  e.  V  E. y  e.  V  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  /\  ( z `
 1 )  =  N ) ) )
17 19.41vv 1915 . . . . . . 7  |-  ( E. x E. y ( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  ( E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N ) )
18 velsn 4193 . . . . . . . . . . . 12  |-  ( z  e.  { <" x N y "> }  <-> 
z  =  <" x N y "> )
1918bicomi 214 . . . . . . . . . . 11  |-  ( z  =  <" x N y ">  <->  z  e.  {
<" x N y "> } )
2019anbi2i 730 . . . . . . . . . 10  |-  ( ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) 
<->  ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  e.  { <" x N y "> } ) )
2120a1i 11 . . . . . . . . 9  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) 
<->  ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  e.  { <" x N y "> } ) ) )
22 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N ) )  ->  N  e.  V )
23 anass 681 . . . . . . . . . . . . . . 15  |-  ( ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( z  = 
<" x m y ">  /\  (
x  =/=  y  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) )
24 ancom 466 . . . . . . . . . . . . . . 15  |-  ( ( z  =  <" x m y ">  /\  ( x  =/=  y  /\  ( { x ,  m }  e.  (Edg
`  G )  /\  { m ,  y }  e.  (Edg `  G
) ) ) )  <-> 
( ( x  =/=  y  /\  ( { x ,  m }  e.  (Edg `  G )  /\  { m ,  y }  e.  (Edg `  G ) ) )  /\  z  =  <" x m y "> ) )
25 an12 838 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =/=  y  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( { x ,  m }  e.  (Edg
`  G )  /\  ( x  =/=  y  /\  { m ,  y }  e.  (Edg `  G ) ) ) )
26 nesym 2850 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =/=  y  <->  -.  y  =  x )
27 prcom 4267 . . . . . . . . . . . . . . . . . . . 20  |-  { m ,  y }  =  { y ,  m }
2827eleq1i 2692 . . . . . . . . . . . . . . . . . . 19  |-  ( { m ,  y }  e.  (Edg `  G
)  <->  { y ,  m }  e.  (Edg `  G
) )
2926, 28anbi12ci 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =/=  y  /\  { m ,  y }  e.  (Edg `  G
) )  <->  ( {
y ,  m }  e.  (Edg `  G )  /\  -.  y  =  x ) )
3029anbi2i 730 . . . . . . . . . . . . . . . . 17  |-  ( ( { x ,  m }  e.  (Edg `  G
)  /\  ( x  =/=  y  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( { x ,  m }  e.  (Edg
`  G )  /\  ( { y ,  m }  e.  (Edg `  G
)  /\  -.  y  =  x ) ) )
3125, 30bitri 264 . . . . . . . . . . . . . . . 16  |-  ( ( x  =/=  y  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( { x ,  m }  e.  (Edg
`  G )  /\  ( { y ,  m }  e.  (Edg `  G
)  /\  -.  y  =  x ) ) )
3231anbi1i 731 . . . . . . . . . . . . . . 15  |-  ( ( ( x  =/=  y  /\  ( { x ,  m }  e.  (Edg
`  G )  /\  { m ,  y }  e.  (Edg `  G
) ) )  /\  z  =  <" x m y "> ) 
<->  ( ( { x ,  m }  e.  (Edg
`  G )  /\  ( { y ,  m }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x m y "> ) )
3323, 24, 323bitri 286 . . . . . . . . . . . . . 14  |-  ( ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( ( { x ,  m }  e.  (Edg `  G )  /\  ( { y ,  m }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  /\  z  =  <" x m y "> )
)
34 preq2 4269 . . . . . . . . . . . . . . . . 17  |-  ( m  =  N  ->  { x ,  m }  =  {
x ,  N }
)
3534eleq1d 2686 . . . . . . . . . . . . . . . 16  |-  ( m  =  N  ->  ( { x ,  m }  e.  (Edg `  G
)  <->  { x ,  N }  e.  (Edg `  G
) ) )
36 preq2 4269 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  N  ->  { y ,  m }  =  { y ,  N } )
3736eleq1d 2686 . . . . . . . . . . . . . . . . 17  |-  ( m  =  N  ->  ( { y ,  m }  e.  (Edg `  G
)  <->  { y ,  N }  e.  (Edg `  G
) ) )
3837anbi1d 741 . . . . . . . . . . . . . . . 16  |-  ( m  =  N  ->  (
( { y ,  m }  e.  (Edg
`  G )  /\  -.  y  =  x
)  <->  ( { y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x
) ) )
3935, 38anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( m  =  N  ->  (
( { x ,  m }  e.  (Edg
`  G )  /\  ( { y ,  m }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  <->  ( {
x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) ) ) )
40 s3eq2 13615 . . . . . . . . . . . . . . . 16  |-  ( m  =  N  ->  <" x m y ">  =  <" x N y "> )
4140eqeq2d 2632 . . . . . . . . . . . . . . 15  |-  ( m  =  N  ->  (
z  =  <" x m y ">  <->  z  =  <" x N y "> )
)
4239, 41anbi12d 747 . . . . . . . . . . . . . 14  |-  ( m  =  N  ->  (
( ( { x ,  m }  e.  (Edg
`  G )  /\  ( { y ,  m }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x m y "> ) 
<->  ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) ) )
4333, 42syl5bb 272 . . . . . . . . . . . . 13  |-  ( m  =  N  ->  (
( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( ( { x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  /\  z  =  <" x N y "> )
) )
4443adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  ( ( x  e.  V  /\  y  e.  V )  /\  (
z `  1 )  =  N ) )  /\  m  =  N )  ->  ( ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( ( { x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  /\  z  =  <" x N y "> )
) )
45 fveq1 6190 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  <" x m y ">  ->  ( z `  1 )  =  ( <" x m y "> `  1 ) )
46 vex 3203 . . . . . . . . . . . . . . . . . . . . 21  |-  m  e. 
_V
47 s3fv1 13637 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  _V  ->  ( <" x m y "> `  1
)  =  m )
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  ( <" x m y "> `  1
)  =  m
4945, 48syl6eq 2672 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  <" x m y ">  ->  ( z `  1 )  =  m )
5049eqeq1d 2624 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  <" x m y ">  ->  ( ( z `  1
)  =  N  <->  m  =  N ) )
5150biimpd 219 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <" x m y ">  ->  ( ( z `  1
)  =  N  ->  m  =  N )
)
5251adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( z  =  <" x m y ">  /\  x  =/=  y )  ->  ( ( z `
 1 )  =  N  ->  m  =  N ) )
5352adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  ->  ( (
z `  1 )  =  N  ->  m  =  N ) )
5453com12 32 . . . . . . . . . . . . . 14  |-  ( ( z `  1 )  =  N  ->  (
( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  ->  m  =  N ) )
5554ad2antll 765 . . . . . . . . . . . . 13  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N ) )  -> 
( ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  ->  m  =  N ) )
5655imp 445 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  ( ( x  e.  V  /\  y  e.  V )  /\  (
z `  1 )  =  N ) )  /\  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  ->  m  =  N )
5722, 44, 56rspcebdv 3314 . . . . . . . . . . 11  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N ) )  -> 
( E. m  e.  V  ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  ( ( { x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  /\  z  =  <" x N y "> )
) )
5857pm5.32da 673 . . . . . . . . . 10  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( ( x  e.  V  /\  y  e.  V )  /\  (
z `  1 )  =  N )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  <->  ( (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N )  /\  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) ) ) )
59 an32 839 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  ( (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) )
6059a1i 11 . . . . . . . . . 10  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  ( (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) ) )
61 usgrumgr 26074 . . . . . . . . . . . . . . . . . 18  |-  ( G  e. USGraph  ->  G  e. UMGraph  )
621, 11umgrpredgv 26035 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  e. UMGraph  /\  { x ,  N }  e.  (Edg
`  G ) )  ->  ( x  e.  V  /\  N  e.  V ) )
6362simpld 475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  e. UMGraph  /\  { x ,  N }  e.  (Edg
`  G ) )  ->  x  e.  V
)
6463ex 450 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e. UMGraph  ->  ( { x ,  N }  e.  (Edg
`  G )  ->  x  e.  V )
)
651, 11umgrpredgv 26035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( G  e. UMGraph  /\  { y ,  N }  e.  (Edg `  G ) )  ->  ( y  e.  V  /\  N  e.  V ) )
6665simpld 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  e. UMGraph  /\  { y ,  N }  e.  (Edg `  G ) )  ->  y  e.  V
)
6766expcom 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( { y ,  N }  e.  (Edg `  G )  ->  ( G  e. UMGraph  ->  y  e.  V ) )
6867adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x )  ->  ( G  e. UMGraph  ->  y  e.  V ) )
6968com12 32 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e. UMGraph  ->  ( ( { y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x )  ->  y  e.  V ) )
7064, 69anim12d 586 . . . . . . . . . . . . . . . . . 18  |-  ( G  e. UMGraph  ->  ( ( { x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  ->  (
x  e.  V  /\  y  e.  V )
) )
719, 61, 703syl 18 . . . . . . . . . . . . . . . . 17  |-  ( G  e. FinUSGraph  ->  ( ( { x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) )  ->  (
x  e.  V  /\  y  e.  V )
) )
7271adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  -> 
( x  e.  V  /\  y  e.  V
) ) )
7372com12 32 . . . . . . . . . . . . . . 15  |-  ( ( { x ,  N }  e.  (Edg `  G
)  /\  ( {
y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x ) )  ->  (
( G  e. FinUSGraph  /\  N  e.  V )  ->  (
x  e.  V  /\  y  e.  V )
) )
7473adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> )  ->  ( ( G  e. FinUSGraph  /\  N  e.  V
)  ->  ( x  e.  V  /\  y  e.  V ) ) )
7574impcom 446 . . . . . . . . . . . . 13  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) )  ->  (
x  e.  V  /\  y  e.  V )
)
76 fveq1 6190 . . . . . . . . . . . . . . 15  |-  ( z  =  <" x N y ">  ->  ( z `  1 )  =  ( <" x N y "> `  1 ) )
7776adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> )  ->  ( z ` 
1 )  =  (
<" x N y "> `  1
) )
78 s3fv1 13637 . . . . . . . . . . . . . . 15  |-  ( N  e.  V  ->  ( <" x N y "> `  1
)  =  N )
7978adantl 482 . . . . . . . . . . . . . 14  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( <" x N y "> `  1
)  =  N )
8077, 79sylan9eqr 2678 . . . . . . . . . . . . 13  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) )  ->  (
z `  1 )  =  N )
8175, 80jca 554 . . . . . . . . . . . 12  |-  ( ( ( G  e. FinUSGraph  /\  N  e.  V )  /\  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) )  ->  (
( x  e.  V  /\  y  e.  V
)  /\  ( z `  1 )  =  N ) )
8281ex 450 . . . . . . . . . . 11  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> )  ->  ( ( x  e.  V  /\  y  e.  V )  /\  (
z `  1 )  =  N ) ) )
8382pm4.71rd 667 . . . . . . . . . 10  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) 
<->  ( ( ( x  e.  V  /\  y  e.  V )  /\  (
z `  1 )  =  N )  /\  (
( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> ) ) ) )
8458, 60, 833bitr4d 300 . . . . . . . . 9  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  ( ( { x ,  N }  e.  (Edg `  G
)  /\  ( {
y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x ) )  /\  z  =  <" x N y "> )
) )
8511nbusgreledg 26249 . . . . . . . . . . . . 13  |-  ( G  e. USGraph  ->  ( x  e.  ( G NeighbVtx  N )  <->  { x ,  N }  e.  (Edg `  G )
) )
869, 85syl 17 . . . . . . . . . . . 12  |-  ( G  e. FinUSGraph  ->  ( x  e.  ( G NeighbVtx  N )  <->  { x ,  N }  e.  (Edg `  G )
) )
8786adantr 481 . . . . . . . . . . 11  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
x  e.  ( G NeighbVtx  N )  <->  { x ,  N }  e.  (Edg
`  G ) ) )
88 eldif 3584 . . . . . . . . . . . 12  |-  ( y  e.  ( ( G NeighbVtx  N )  \  {
x } )  <->  ( y  e.  ( G NeighbVtx  N )  /\  -.  y  e.  {
x } ) )
8911nbusgreledg 26249 . . . . . . . . . . . . . . 15  |-  ( G  e. USGraph  ->  ( y  e.  ( G NeighbVtx  N )  <->  { y ,  N }  e.  (Edg `  G )
) )
909, 89syl 17 . . . . . . . . . . . . . 14  |-  ( G  e. FinUSGraph  ->  ( y  e.  ( G NeighbVtx  N )  <->  { y ,  N }  e.  (Edg `  G )
) )
9190adantr 481 . . . . . . . . . . . . 13  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
y  e.  ( G NeighbVtx  N )  <->  { y ,  N }  e.  (Edg
`  G ) ) )
92 velsn 4193 . . . . . . . . . . . . . . 15  |-  ( y  e.  { x }  <->  y  =  x )
9392a1i 11 . . . . . . . . . . . . . 14  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
y  e.  { x } 
<->  y  =  x ) )
9493notbid 308 . . . . . . . . . . . . 13  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( -.  y  e.  { x } 
<->  -.  y  =  x ) )
9591, 94anbi12d 747 . . . . . . . . . . . 12  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( y  e.  ( G NeighbVtx  N )  /\  -.  y  e.  { x } )  <->  ( {
y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x ) ) )
9688, 95syl5bb 272 . . . . . . . . . . 11  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
y  e.  ( ( G NeighbVtx  N )  \  {
x } )  <->  ( {
y ,  N }  e.  (Edg `  G )  /\  -.  y  =  x ) ) )
9787, 96anbi12d 747 . . . . . . . . . 10  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( x  e.  ( G NeighbVtx  N )  /\  y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) )  <->  ( {
x ,  N }  e.  (Edg `  G )  /\  ( { y ,  N }  e.  (Edg
`  G )  /\  -.  y  =  x
) ) ) )
9897anbi1d 741 . . . . . . . . 9  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( x  e.  ( G NeighbVtx  N )  /\  y  e.  (
( G NeighbVtx  N )  \  { x } ) )  /\  z  e. 
{ <" x N y "> } )  <-> 
( ( { x ,  N }  e.  (Edg
`  G )  /\  ( { y ,  N }  e.  (Edg `  G
)  /\  -.  y  =  x ) )  /\  z  e.  { <" x N y "> } ) ) )
9921, 84, 983bitr4d 300 . . . . . . . 8  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  ( (
x  e.  ( G NeighbVtx  N )  /\  y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) )  /\  z  e.  { <" x N y "> } ) ) )
100992exbidv 1852 . . . . . . 7  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( E. x E. y ( ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  E. x E. y ( ( x  e.  ( G NeighbVtx  N )  /\  y  e.  ( ( G NeighbVtx  N )  \  { x } ) )  /\  z  e. 
{ <" x N y "> } ) ) )
10117, 100syl5bbr 274 . . . . . 6  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N )  <->  E. x E. y ( ( x  e.  ( G NeighbVtx  N )  /\  y  e.  ( ( G NeighbVtx  N )  \  { x } ) )  /\  z  e. 
{ <" x N y "> } ) ) )
102 r2ex 3061 . . . . . . 7  |-  ( E. x  e.  V  E. y  e.  V  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  <->  E. x E. y
( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  (
( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) ) )
103102anbi1i 731 . . . . . 6  |-  ( ( E. x  e.  V  E. y  e.  V  E. m  e.  V  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  /\  ( z `
 1 )  =  N )  <->  ( E. x E. y ( ( x  e.  V  /\  y  e.  V )  /\  E. m  e.  V  ( ( z  = 
<" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) ) )  /\  (
z `  1 )  =  N ) )
104 r2ex 3061 . . . . . 6  |-  ( E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) z  e.  { <" x N y "> }  <->  E. x E. y ( ( x  e.  ( G NeighbVtx  N )  /\  y  e.  ( ( G NeighbVtx  N )  \  { x } ) )  /\  z  e. 
{ <" x N y "> } ) )
105101, 103, 1043bitr4g 303 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( E. x  e.  V  E. y  e.  V  E. m  e.  V  ( ( z  =  <" x m y ">  /\  x  =/=  y )  /\  ( { x ,  m }  e.  (Edg `  G
)  /\  { m ,  y }  e.  (Edg `  G ) ) )  /\  ( z `
 1 )  =  N )  <->  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) z  e.  { <" x N y "> } ) )
106 vex 3203 . . . . . . . 8  |-  z  e. 
_V
107 eleq1w 2684 . . . . . . . . 9  |-  ( p  =  z  ->  (
p  e.  { <" x N y "> }  <->  z  e.  {
<" x N y "> } ) )
1081072rexbidv 3057 . . . . . . . 8  |-  ( p  =  z  ->  ( E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) p  e.  { <" x N y "> }  <->  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) z  e.  { <" x N y "> } ) )
109106, 108elab 3350 . . . . . . 7  |-  ( z  e.  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) p  e.  { <" x N y "> } }  <->  E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) z  e.  { <" x N y "> } )
110109bicomi 214 . . . . . 6  |-  ( E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) z  e.  { <" x N y "> }  <->  z  e.  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) p  e.  { <" x N y "> } } )
111110a1i 11 . . . . 5  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) z  e.  { <" x N y "> }  <->  z  e.  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) p  e.  { <" x N y "> } } ) )
11216, 105, 1113bitrd 294 . . . 4  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
( z  e.  ( 2 WSPathsN  G )  /\  (
z `  1 )  =  N )  <->  z  e.  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) p  e.  { <" x N y "> } } ) )
1134, 112bitrd 268 . . 3  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  (
z  e.  ( M `
 N )  <->  z  e.  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  (
( G NeighbVtx  N )  \  { x } ) p  e.  { <" x N y "> } } ) )
114113eqrdv 2620 . 2  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( M `  N )  =  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) p  e.  { <" x N y "> } }
)
115 dfiunv2 4556 . 2  |-  U_ x  e.  ( G NeighbVtx  N ) U_ y  e.  (
( G NeighbVtx  N )  \  { x } ) { <" x N y "> }  =  { p  |  E. x  e.  ( G NeighbVtx  N ) E. y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) p  e.  { <" x N y "> } }
116114, 115syl6eqr 2674 1  |-  ( ( G  e. FinUSGraph  /\  N  e.  V )  ->  ( M `  N )  =  U_ x  e.  ( G NeighbVtx  N ) U_ y  e.  ( ( G NeighbVtx  N ) 
\  { x }
) { <" x N y "> } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   {csn 4177   {cpr 4179   U_ciun 4520    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1c1 9937   2c2 11070   NN0cn0 11292   <"cs3 13587  Vtxcvtx 25874  Edgcedg 25939   UMGraph cumgr 25976   USGraph cusgr 26044   FinUSGraph cfusgr 26208   NeighbVtx cnbgr 26224   WSPathsN cwwspthsn 26720   WSPathsNOn cwwspthsnon 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-uspgr 26045  df-usgr 26046  df-fusgr 26209  df-nbgr 26228  df-wlks 26495  df-wlkson 26496  df-trls 26589  df-trlson 26590  df-pths 26612  df-spths 26613  df-pthson 26614  df-spthson 26615  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724  df-wspthsn 26725  df-wspthsnon 26726
This theorem is referenced by:  fusgreghash2wspv  27199
  Copyright terms: Public domain W3C validator