Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difuncomp Structured version   Visualization version   Unicode version

Theorem difuncomp 29369
Description: Express a class difference using unions and class complements. (Contributed by Thierry Arnoux, 21-Jun-2020.)
Assertion
Ref Expression
difuncomp  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( C  \  (
( C  \  A
)  u.  B ) ) )

Proof of Theorem difuncomp
StepHypRef Expression
1 incom 3805 . . . 4  |-  ( C  i^i  A )  =  ( A  i^i  C
)
2 sseqin2 3817 . . . . 5  |-  ( A 
C_  C  <->  ( C  i^i  A )  =  A )
32biimpi 206 . . . 4  |-  ( A 
C_  C  ->  ( C  i^i  A )  =  A )
41, 3syl5reqr 2671 . . 3  |-  ( A 
C_  C  ->  A  =  ( A  i^i  C ) )
54difeq1d 3727 . 2  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( ( A  i^i  C )  \  B ) )
6 difundi 3879 . . . 4  |-  ( C 
\  ( ( C 
\  A )  u.  B ) )  =  ( ( C  \ 
( C  \  A
) )  i^i  ( C  \  B ) )
7 dfss4 3858 . . . . . 6  |-  ( A 
C_  C  <->  ( C  \  ( C  \  A
) )  =  A )
87biimpi 206 . . . . 5  |-  ( A 
C_  C  ->  ( C  \  ( C  \  A ) )  =  A )
98ineq1d 3813 . . . 4  |-  ( A 
C_  C  ->  (
( C  \  ( C  \  A ) )  i^i  ( C  \  B ) )  =  ( A  i^i  ( C  \  B ) ) )
106, 9syl5eq 2668 . . 3  |-  ( A 
C_  C  ->  ( C  \  ( ( C 
\  A )  u.  B ) )  =  ( A  i^i  ( C  \  B ) ) )
11 indif2 3870 . . 3  |-  ( A  i^i  ( C  \  B ) )  =  ( ( A  i^i  C )  \  B )
1210, 11syl6eq 2672 . 2  |-  ( A 
C_  C  ->  ( C  \  ( ( C 
\  A )  u.  B ) )  =  ( ( A  i^i  C )  \  B ) )
135, 12eqtr4d 2659 1  |-  ( A 
C_  C  ->  ( A  \  B )  =  ( C  \  (
( C  \  A
)  u.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588
This theorem is referenced by:  ldgenpisyslem1  30226
  Copyright terms: Public domain W3C validator