MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjord Structured version   Visualization version   Unicode version

Theorem disjord 4641
Description: Conditions for a collection of sets  A ( a ) for  a  e.  V to be disjoint. (Contributed by AV, 9-Jan-2022.)
Hypotheses
Ref Expression
disjord.1  |-  ( a  =  b  ->  A  =  B )
disjord.2  |-  ( (
ph  /\  x  e.  A  /\  x  e.  B
)  ->  a  =  b )
Assertion
Ref Expression
disjord  |-  ( ph  -> Disj  a  e.  V  A
)
Distinct variable groups:    A, b, x    B, a, x    V, a, b, x    ph, a,
b, x
Allowed substitution hints:    A( a)    B( b)

Proof of Theorem disjord
StepHypRef Expression
1 orc 400 . . . . . 6  |-  ( a  =  b  ->  (
a  =  b  \/  ( A  i^i  B
)  =  (/) ) )
21a1d 25 . . . . 5  |-  ( a  =  b  ->  ( ph  ->  ( a  =  b  \/  ( A  i^i  B )  =  (/) ) ) )
3 disjord.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  A  /\  x  e.  B
)  ->  a  =  b )
433expia 1267 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  B  -> 
a  =  b ) )
54con3d 148 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  A )  ->  ( -.  a  =  b  ->  -.  x  e.  B
) )
65impancom 456 . . . . . . . . 9  |-  ( (
ph  /\  -.  a  =  b )  -> 
( x  e.  A  ->  -.  x  e.  B
) )
76ralrimiv 2965 . . . . . . . 8  |-  ( (
ph  /\  -.  a  =  b )  ->  A. x  e.  A  -.  x  e.  B
)
8 disj 4017 . . . . . . . 8  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
97, 8sylibr 224 . . . . . . 7  |-  ( (
ph  /\  -.  a  =  b )  -> 
( A  i^i  B
)  =  (/) )
109olcd 408 . . . . . 6  |-  ( (
ph  /\  -.  a  =  b )  -> 
( a  =  b  \/  ( A  i^i  B )  =  (/) ) )
1110expcom 451 . . . . 5  |-  ( -.  a  =  b  -> 
( ph  ->  ( a  =  b  \/  ( A  i^i  B )  =  (/) ) ) )
122, 11pm2.61i 176 . . . 4  |-  ( ph  ->  ( a  =  b  \/  ( A  i^i  B )  =  (/) ) )
1312adantr 481 . . 3  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a  =  b  \/  ( A  i^i  B )  =  (/) ) )
1413ralrimivva 2971 . 2  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( a  =  b  \/  ( A  i^i  B )  =  (/) ) )
15 disjord.1 . . 3  |-  ( a  =  b  ->  A  =  B )
1615disjor 4634 . 2  |-  (Disj  a  e.  V  A  <->  A. a  e.  V  A. b  e.  V  ( a  =  b  \/  ( A  i^i  B )  =  (/) ) )
1714, 16sylibr 224 1  |-  ( ph  -> Disj  a  e.  V  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   (/)c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  2wspdisj  26855
  Copyright terms: Public domain W3C validator