| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjord | Structured version Visualization version Unicode version | ||
| Description: Conditions for a
collection of sets |
| Ref | Expression |
|---|---|
| disjord.1 |
|
| disjord.2 |
|
| Ref | Expression |
|---|---|
| disjord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 400 |
. . . . . 6
| |
| 2 | 1 | a1d 25 |
. . . . 5
|
| 3 | disjord.2 |
. . . . . . . . . . . 12
| |
| 4 | 3 | 3expia 1267 |
. . . . . . . . . . 11
|
| 5 | 4 | con3d 148 |
. . . . . . . . . 10
|
| 6 | 5 | impancom 456 |
. . . . . . . . 9
|
| 7 | 6 | ralrimiv 2965 |
. . . . . . . 8
|
| 8 | disj 4017 |
. . . . . . . 8
| |
| 9 | 7, 8 | sylibr 224 |
. . . . . . 7
|
| 10 | 9 | olcd 408 |
. . . . . 6
|
| 11 | 10 | expcom 451 |
. . . . 5
|
| 12 | 2, 11 | pm2.61i 176 |
. . . 4
|
| 13 | 12 | adantr 481 |
. . 3
|
| 14 | 13 | ralrimivva 2971 |
. 2
|
| 15 | disjord.1 |
. . 3
| |
| 16 | 15 | disjor 4634 |
. 2
|
| 17 | 14, 16 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: 2wspdisj 26855 |
| Copyright terms: Public domain | W3C validator |