| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el | Structured version Visualization version Unicode version | ||
| Description: Every set is an element of some other set. See elALT 4910 for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| el |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpow 4844 |
. 2
| |
| 2 | ax9 2003 |
. . . . 5
| |
| 3 | 2 | alrimiv 1855 |
. . . 4
|
| 4 | ax8 1996 |
. . . 4
| |
| 5 | 3, 4 | embantd 59 |
. . 3
|
| 6 | 5 | spimv 2257 |
. 2
|
| 7 | 1, 6 | eximii 1764 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-11 2034 ax-12 2047 ax-13 2246 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: dtru 4857 dvdemo2 4903 axpownd 9423 zfcndinf 9440 domep 31698 distel 31709 |
| Copyright terms: Public domain | W3C validator |