| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version Unicode version | ||
| Description: Explicit demonstration
the class |
| Ref | Expression |
|---|---|
| elab.xex |
|
| elab.xmaj |
|
| elab.xsub |
|
| Ref | Expression |
|---|---|
| elabd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab.xex |
. 2
| |
| 2 | elab.xmaj |
. 2
| |
| 3 | elab.xsub |
. . 3
| |
| 4 | 3 | spcegv 3294 |
. 2
|
| 5 | 1, 2, 4 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: hasheqf1od 13144 setsexstruct2 15897 wwlksnextbij 26797 clrellem 37929 clcnvlem 37930 uspgrsprfo 41756 uspgrbispr 41759 |
| Copyright terms: Public domain | W3C validator |