![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elabd | Structured version Visualization version Unicode version |
Description: Explicit demonstration
the class ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elab.xex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
elab.xmaj |
![]() ![]() ![]() ![]() ![]() ![]() |
elab.xsub |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elabd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab.xex |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | elab.xmaj |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | elab.xsub |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | spcegv 3294 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 2, 4 | sylc 65 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
This theorem is referenced by: hasheqf1od 13144 setsexstruct2 15897 wwlksnextbij 26797 clrellem 37929 clcnvlem 37930 uspgrsprfo 41756 uspgrbispr 41759 |
Copyright terms: Public domain | W3C validator |