Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clrellem Structured version   Visualization version   Unicode version

Theorem clrellem 37929
Description: When the property  ps holds for a relation substituted for  x, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.)
Hypotheses
Ref Expression
clrellem.y  |-  ( ph  ->  Y  e.  _V )
clrellem.rel  |-  ( ph  ->  Rel  X )
clrellem.sub  |-  ( x  =  `' `' Y  ->  ( ps  <->  ch )
)
clrellem.sup  |-  ( ph  ->  X  C_  Y )
clrellem.maj  |-  ( ph  ->  ch )
Assertion
Ref Expression
clrellem  |-  ( ph  ->  Rel  |^| { x  |  ( X  C_  x  /\  ps ) } )
Distinct variable groups:    x, X    x, Y    ph, x    ch, x
Allowed substitution hint:    ps( x)

Proof of Theorem clrellem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 clrellem.y . . . 4  |-  ( ph  ->  Y  e.  _V )
2 cnvexg 7112 . . . 4  |-  ( Y  e.  _V  ->  `' Y  e.  _V )
3 cnvexg 7112 . . . 4  |-  ( `' Y  e.  _V  ->  `' `' Y  e.  _V )
41, 2, 33syl 18 . . 3  |-  ( ph  ->  `' `' Y  e.  _V )
5 clrellem.rel . . . . . 6  |-  ( ph  ->  Rel  X )
6 dfrel2 5583 . . . . . 6  |-  ( Rel 
X  <->  `' `' X  =  X
)
75, 6sylib 208 . . . . 5  |-  ( ph  ->  `' `' X  =  X
)
8 clrellem.sup . . . . . 6  |-  ( ph  ->  X  C_  Y )
9 cnvss 5294 . . . . . 6  |-  ( X 
C_  Y  ->  `' X  C_  `' Y )
10 cnvss 5294 . . . . . 6  |-  ( `' X  C_  `' Y  ->  `' `' X  C_  `' `' Y )
118, 9, 103syl 18 . . . . 5  |-  ( ph  ->  `' `' X  C_  `' `' Y )
127, 11eqsstr3d 3640 . . . 4  |-  ( ph  ->  X  C_  `' `' Y )
13 clrellem.maj . . . 4  |-  ( ph  ->  ch )
14 relcnv 5503 . . . . 5  |-  Rel  `' `' Y
1514a1i 11 . . . 4  |-  ( ph  ->  Rel  `' `' Y
)
1612, 13, 15jca31 557 . . 3  |-  ( ph  ->  ( ( X  C_  `' `' Y  /\  ch )  /\  Rel  `' `' Y
) )
17 clrellem.sub . . . . 5  |-  ( x  =  `' `' Y  ->  ( ps  <->  ch )
)
1817cleq2lem 37914 . . . 4  |-  ( x  =  `' `' Y  ->  ( ( X  C_  x  /\  ps )  <->  ( X  C_  `' `' Y  /\  ch )
) )
19 releq 5201 . . . 4  |-  ( x  =  `' `' Y  ->  ( Rel  x  <->  Rel  `' `' Y ) )
2018, 19anbi12d 747 . . 3  |-  ( x  =  `' `' Y  ->  ( ( ( X 
C_  x  /\  ps )  /\  Rel  x )  <-> 
( ( X  C_  `' `' Y  /\  ch )  /\  Rel  `' `' Y
) ) )
214, 16, 20elabd 3352 . 2  |-  ( ph  ->  E. x ( ( X  C_  x  /\  ps )  /\  Rel  x
) )
22 releq 5201 . . . 4  |-  ( y  =  x  ->  ( Rel  y  <->  Rel  x ) )
2322rexab2 3373 . . 3  |-  ( E. y  e.  { x  |  ( X  C_  x  /\  ps ) } Rel  y  <->  E. x
( ( X  C_  x  /\  ps )  /\  Rel  x ) )
2423biimpri 218 . 2  |-  ( E. x ( ( X 
C_  x  /\  ps )  /\  Rel  x )  ->  E. y  e.  {
x  |  ( X 
C_  x  /\  ps ) } Rel  y )
25 relint 5242 . 2  |-  ( E. y  e.  { x  |  ( X  C_  x  /\  ps ) } Rel  y  ->  Rel  |^|
{ x  |  ( X  C_  x  /\  ps ) } )
2621, 24, 253syl 18 1  |-  ( ph  ->  Rel  |^| { x  |  ( X  C_  x  /\  ps ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    C_ wss 3574   |^|cint 4475   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator