| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clrellem | Structured version Visualization version Unicode version | ||
| Description: When the property |
| Ref | Expression |
|---|---|
| clrellem.y |
|
| clrellem.rel |
|
| clrellem.sub |
|
| clrellem.sup |
|
| clrellem.maj |
|
| Ref | Expression |
|---|---|
| clrellem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clrellem.y |
. . . 4
| |
| 2 | cnvexg 7112 |
. . . 4
| |
| 3 | cnvexg 7112 |
. . . 4
| |
| 4 | 1, 2, 3 | 3syl 18 |
. . 3
|
| 5 | clrellem.rel |
. . . . . 6
| |
| 6 | dfrel2 5583 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 208 |
. . . . 5
|
| 8 | clrellem.sup |
. . . . . 6
| |
| 9 | cnvss 5294 |
. . . . . 6
| |
| 10 | cnvss 5294 |
. . . . . 6
| |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . 5
|
| 12 | 7, 11 | eqsstr3d 3640 |
. . . 4
|
| 13 | clrellem.maj |
. . . 4
| |
| 14 | relcnv 5503 |
. . . . 5
| |
| 15 | 14 | a1i 11 |
. . . 4
|
| 16 | 12, 13, 15 | jca31 557 |
. . 3
|
| 17 | clrellem.sub |
. . . . 5
| |
| 18 | 17 | cleq2lem 37914 |
. . . 4
|
| 19 | releq 5201 |
. . . 4
| |
| 20 | 18, 19 | anbi12d 747 |
. . 3
|
| 21 | 4, 16, 20 | elabd 3352 |
. 2
|
| 22 | releq 5201 |
. . . 4
| |
| 23 | 22 | rexab2 3373 |
. . 3
|
| 24 | 23 | biimpri 218 |
. 2
|
| 25 | relint 5242 |
. 2
| |
| 26 | 21, 24, 25 | 3syl 18 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-iin 4523 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |