Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrsprfo Structured version   Visualization version   Unicode version

Theorem uspgrsprfo 41756
Description: The mapping  F is a function from the "simple pseudographs" with a fixed set of vertices  V onto the subsets of the set of pairs over the set  V. (Contributed by AV, 25-Nov-2021.)
Hypotheses
Ref Expression
uspgrsprf.p  |-  P  =  ~P (Pairs `  V
)
uspgrsprf.g  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
uspgrsprf.f  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
Assertion
Ref Expression
uspgrsprfo  |-  ( V  e.  W  ->  F : G -onto-> P )
Distinct variable groups:    P, e,
q, v    e, V, q, v    e, W, v   
g, G    P, g,
e, v    W, q
Allowed substitution hints:    F( v, e, g, q)    G( v, e, q)    V( g)    W( g)

Proof of Theorem uspgrsprfo
Dummy variables  a 
b  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrsprf.p . . . 4  |-  P  =  ~P (Pairs `  V
)
2 uspgrsprf.g . . . 4  |-  G  =  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }
3 uspgrsprf.f . . . 4  |-  F  =  ( g  e.  G  |->  ( 2nd `  g
) )
41, 2, 3uspgrsprf 41754 . . 3  |-  F : G
--> P
54a1i 11 . 2  |-  ( V  e.  W  ->  F : G --> P )
61eleq2i 2693 . . . . . . 7  |-  ( a  e.  P  <->  a  e.  ~P (Pairs `  V )
)
7 selpw 4165 . . . . . . 7  |-  ( a  e.  ~P (Pairs `  V )  <->  a  C_  (Pairs `  V ) )
86, 7bitri 264 . . . . . 6  |-  ( a  e.  P  <->  a  C_  (Pairs `  V ) )
9 eqidd 2623 . . . . . . . . . 10  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  V  =  V )
10 vex 3203 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
1110a1i 11 . . . . . . . . . . . . . 14  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  a  e.  _V )
12 f1oi 6174 . . . . . . . . . . . . . . . . 17  |-  (  _I  |`  a ) : a -1-1-onto-> a
1312a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (  _I  |`  a ) : a -1-1-onto-> a )
14 dmresi 5457 . . . . . . . . . . . . . . . . 17  |-  dom  (  _I  |`  a )  =  a
15 f1oeq2 6128 . . . . . . . . . . . . . . . . 17  |-  ( dom  (  _I  |`  a
)  =  a  -> 
( (  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> a  <->  (  _I  |`  a ) : a -1-1-onto-> a ) )
1614, 15ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( (  _I  |`  a ) : dom  (  _I  |`  a
)
-1-1-onto-> a 
<->  (  _I  |`  a
) : a -1-1-onto-> a )
1713, 16sylibr 224 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (  _I  |`  a ) : dom  (  _I  |`  a
)
-1-1-onto-> a )
18 sprvalpwle2 41739 . . . . . . . . . . . . . . . . 17  |-  ( V  e.  W  ->  (Pairs `  V )  =  {
p  e.  ( ~P V  \  { (/) } )  |  ( # `  p )  <_  2 } )
1918sseq2d 3633 . . . . . . . . . . . . . . . 16  |-  ( V  e.  W  ->  (
a  C_  (Pairs `  V
)  <->  a  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
2019biimpac 503 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  a  C_ 
{ p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 } )
2117, 20jca 554 . . . . . . . . . . . . . 14  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (
(  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> a  /\  a  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
22 f1oeq3 6129 . . . . . . . . . . . . . . 15  |-  ( f  =  a  ->  (
(  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> f  <->  (  _I  |`  a ) : dom  (  _I  |`  a ) -1-1-onto-> a ) )
23 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( f  =  a  ->  (
f  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }  <->  a 
C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
2422, 23anbi12d 747 . . . . . . . . . . . . . 14  |-  ( f  =  a  ->  (
( (  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> f  /\  f  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
)  <->  ( (  _I  |`  a ) : dom  (  _I  |`  a ) -1-1-onto-> a  /\  a  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) ) )
2511, 21, 24elabd 3352 . . . . . . . . . . . . 13  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  E. f
( (  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> f  /\  f  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
26 resiexg 7102 . . . . . . . . . . . . . . 15  |-  ( a  e.  _V  ->  (  _I  |`  a )  e. 
_V )
2710, 26ax-mp 5 . . . . . . . . . . . . . 14  |-  (  _I  |`  a )  e.  _V
2827f11o 7128 . . . . . . . . . . . . 13  |-  ( (  _I  |`  a ) : dom  (  _I  |`  a
) -1-1-> { p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 }  <->  E. f
( (  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-onto-> f  /\  f  C_  { p  e.  ( ~P V  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
2925, 28sylibr 224 . . . . . . . . . . . 12  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (  _I  |`  a ) : dom  (  _I  |`  a
) -1-1-> { p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 } )
3010a1i 11 . . . . . . . . . . . . . . . 16  |-  ( a 
C_  (Pairs `  V )  ->  a  e.  _V )
3130resiexd 6480 . . . . . . . . . . . . . . 15  |-  ( a 
C_  (Pairs `  V )  ->  (  _I  |`  a
)  e.  _V )
3231anim2i 593 . . . . . . . . . . . . . 14  |-  ( ( V  e.  W  /\  a  C_  (Pairs `  V
) )  ->  ( V  e.  W  /\  (  _I  |`  a )  e.  _V ) )
3332ancoms 469 . . . . . . . . . . . . 13  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( V  e.  W  /\  (  _I  |`  a )  e.  _V ) )
34 isuspgrop 26056 . . . . . . . . . . . . 13  |-  ( ( V  e.  W  /\  (  _I  |`  a )  e.  _V )  -> 
( <. V ,  (  _I  |`  a ) >.  e. USPGraph 
<->  (  _I  |`  a
) : dom  (  _I  |`  a ) -1-1-> {
p  e.  ( ~P V  \  { (/) } )  |  ( # `  p )  <_  2 } ) )
3533, 34syl 17 . . . . . . . . . . . 12  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( <. V ,  (  _I  |`  a ) >.  e. USPGraph  <->  (  _I  |`  a ) : dom  (  _I  |`  a )
-1-1-> { p  e.  ( ~P V  \  { (/)
} )  |  (
# `  p )  <_  2 } ) )
3629, 35mpbird 247 . . . . . . . . . . 11  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  <. V , 
(  _I  |`  a
) >.  e. USPGraph  )
37 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( q  =  <. V ,  (  _I  |`  a ) >.  ->  (Vtx `  q
)  =  (Vtx `  <. V ,  (  _I  |`  a ) >. )
)
3837eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( q  =  <. V ,  (  _I  |`  a ) >.  ->  ( (Vtx `  q )  =  V  <-> 
(Vtx `  <. V , 
(  _I  |`  a
) >. )  =  V ) )
39 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( q  =  <. V ,  (  _I  |`  a ) >.  ->  (Edg `  q
)  =  (Edg `  <. V ,  (  _I  |`  a ) >. )
)
4039eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( q  =  <. V ,  (  _I  |`  a ) >.  ->  ( (Edg `  q )  =  a  <-> 
(Edg `  <. V , 
(  _I  |`  a
) >. )  =  a ) )
4138, 40anbi12d 747 . . . . . . . . . . . 12  |-  ( q  =  <. V ,  (  _I  |`  a ) >.  ->  ( ( (Vtx
`  q )  =  V  /\  (Edg `  q )  =  a )  <->  ( (Vtx `  <. V ,  (  _I  |`  a ) >. )  =  V  /\  (Edg ` 
<. V ,  (  _I  |`  a ) >. )  =  a ) ) )
4241adantl 482 . . . . . . . . . . 11  |-  ( ( ( a  C_  (Pairs `  V )  /\  V  e.  W )  /\  q  =  <. V ,  (  _I  |`  a ) >. )  ->  ( (
(Vtx `  q )  =  V  /\  (Edg `  q )  =  a )  <->  ( (Vtx `  <. V ,  (  _I  |`  a ) >. )  =  V  /\  (Edg ` 
<. V ,  (  _I  |`  a ) >. )  =  a ) ) )
43 opvtxfv 25884 . . . . . . . . . . . . . 14  |-  ( ( V  e.  W  /\  (  _I  |`  a )  e.  _V )  -> 
(Vtx `  <. V , 
(  _I  |`  a
) >. )  =  V )
4432, 43syl 17 . . . . . . . . . . . . 13  |-  ( ( V  e.  W  /\  a  C_  (Pairs `  V
) )  ->  (Vtx ` 
<. V ,  (  _I  |`  a ) >. )  =  V )
45 edgopval 25944 . . . . . . . . . . . . . . 15  |-  ( ( V  e.  W  /\  (  _I  |`  a )  e.  _V )  -> 
(Edg `  <. V , 
(  _I  |`  a
) >. )  =  ran  (  _I  |`  a ) )
4632, 45syl 17 . . . . . . . . . . . . . 14  |-  ( ( V  e.  W  /\  a  C_  (Pairs `  V
) )  ->  (Edg ` 
<. V ,  (  _I  |`  a ) >. )  =  ran  (  _I  |`  a
) )
47 rnresi 5479 . . . . . . . . . . . . . 14  |-  ran  (  _I  |`  a )  =  a
4846, 47syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ( V  e.  W  /\  a  C_  (Pairs `  V
) )  ->  (Edg ` 
<. V ,  (  _I  |`  a ) >. )  =  a )
4944, 48jca 554 . . . . . . . . . . . 12  |-  ( ( V  e.  W  /\  a  C_  (Pairs `  V
) )  ->  (
(Vtx `  <. V , 
(  _I  |`  a
) >. )  =  V  /\  (Edg `  <. V ,  (  _I  |`  a
) >. )  =  a ) )
5049ancoms 469 . . . . . . . . . . 11  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (
(Vtx `  <. V , 
(  _I  |`  a
) >. )  =  V  /\  (Edg `  <. V ,  (  _I  |`  a
) >. )  =  a ) )
5136, 42, 50rspcedvd 3317 . . . . . . . . . 10  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  E. q  e. USPGraph  ( (Vtx `  q
)  =  V  /\  (Edg `  q )  =  a ) )
529, 51jca 554 . . . . . . . . 9  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( V  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  V  /\  (Edg `  q
)  =  a ) ) )
532eleq2i 2693 . . . . . . . . . 10  |-  ( <. V ,  a >.  e.  G  <->  <. V ,  a
>.  e.  { <. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) } )
5430anim1i 592 . . . . . . . . . . . 12  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  (
a  e.  _V  /\  V  e.  W )
)
5554ancomd 467 . . . . . . . . . . 11  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( V  e.  W  /\  a  e.  _V )
)
56 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( v  =  V  ->  (
v  =  V  <->  V  =  V ) )
5756adantr 481 . . . . . . . . . . . . 13  |-  ( ( v  =  V  /\  e  =  a )  ->  ( v  =  V  <-> 
V  =  V ) )
58 eqeq2 2633 . . . . . . . . . . . . . . 15  |-  ( v  =  V  ->  (
(Vtx `  q )  =  v  <->  (Vtx `  q )  =  V ) )
59 eqeq2 2633 . . . . . . . . . . . . . . 15  |-  ( e  =  a  ->  (
(Edg `  q )  =  e  <->  (Edg `  q )  =  a ) )
6058, 59bi2anan9 917 . . . . . . . . . . . . . 14  |-  ( ( v  =  V  /\  e  =  a )  ->  ( ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e )  <-> 
( (Vtx `  q
)  =  V  /\  (Edg `  q )  =  a ) ) )
6160rexbidv 3052 . . . . . . . . . . . . 13  |-  ( ( v  =  V  /\  e  =  a )  ->  ( E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q )  =  e )  <->  E. q  e. USPGraph  ( (Vtx
`  q )  =  V  /\  (Edg `  q )  =  a ) ) )
6257, 61anbi12d 747 . . . . . . . . . . . 12  |-  ( ( v  =  V  /\  e  =  a )  ->  ( ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) )  <->  ( V  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  V  /\  (Edg `  q )  =  a ) ) ) )
6362opelopabga 4988 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  a  e.  _V )  ->  ( <. V ,  a
>.  e.  { <. v ,  e >.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  v  /\  (Edg `  q
)  =  e ) ) }  <->  ( V  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  V  /\  (Edg `  q )  =  a ) ) ) )
6455, 63syl 17 . . . . . . . . . 10  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( <. V ,  a >.  e.  { <. v ,  e
>.  |  ( v  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  v  /\  (Edg `  q )  =  e ) ) }  <-> 
( V  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q )  =  V  /\  (Edg `  q )  =  a ) ) ) )
6553, 64syl5bb 272 . . . . . . . . 9  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( <. V ,  a >.  e.  G  <->  ( V  =  V  /\  E. q  e. USPGraph  ( (Vtx `  q
)  =  V  /\  (Edg `  q )  =  a ) ) ) )
6652, 65mpbird 247 . . . . . . . 8  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  <. V , 
a >.  e.  G )
67 fveq2 6191 . . . . . . . . . 10  |-  ( b  =  <. V ,  a
>.  ->  ( 2nd `  b
)  =  ( 2nd `  <. V ,  a
>. ) )
6867eqeq2d 2632 . . . . . . . . 9  |-  ( b  =  <. V ,  a
>.  ->  ( a  =  ( 2nd `  b
)  <->  a  =  ( 2nd `  <. V , 
a >. ) ) )
6968adantl 482 . . . . . . . 8  |-  ( ( ( a  C_  (Pairs `  V )  /\  V  e.  W )  /\  b  =  <. V ,  a
>. )  ->  ( a  =  ( 2nd `  b
)  <->  a  =  ( 2nd `  <. V , 
a >. ) ) )
70 op2ndg 7181 . . . . . . . . . . 11  |-  ( ( V  e.  W  /\  a  e.  _V )  ->  ( 2nd `  <. V ,  a >. )  =  a )
7110, 70mpan2 707 . . . . . . . . . 10  |-  ( V  e.  W  ->  ( 2nd `  <. V ,  a
>. )  =  a
)
7271adantl 482 . . . . . . . . 9  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  ( 2nd `  <. V ,  a
>. )  =  a
)
7372eqcomd 2628 . . . . . . . 8  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  a  =  ( 2nd `  <. V ,  a >. )
)
7466, 69, 73rspcedvd 3317 . . . . . . 7  |-  ( ( a  C_  (Pairs `  V
)  /\  V  e.  W )  ->  E. b  e.  G  a  =  ( 2nd `  b ) )
7574ex 450 . . . . . 6  |-  ( a 
C_  (Pairs `  V )  ->  ( V  e.  W  ->  E. b  e.  G  a  =  ( 2nd `  b ) ) )
768, 75sylbi 207 . . . . 5  |-  ( a  e.  P  ->  ( V  e.  W  ->  E. b  e.  G  a  =  ( 2nd `  b
) ) )
7776impcom 446 . . . 4  |-  ( ( V  e.  W  /\  a  e.  P )  ->  E. b  e.  G  a  =  ( 2nd `  b ) )
781, 2, 3uspgrsprfv 41753 . . . . . . 7  |-  ( b  e.  G  ->  ( F `  b )  =  ( 2nd `  b
) )
7978adantl 482 . . . . . 6  |-  ( ( ( V  e.  W  /\  a  e.  P
)  /\  b  e.  G )  ->  ( F `  b )  =  ( 2nd `  b
) )
8079eqeq2d 2632 . . . . 5  |-  ( ( ( V  e.  W  /\  a  e.  P
)  /\  b  e.  G )  ->  (
a  =  ( F `
 b )  <->  a  =  ( 2nd `  b ) ) )
8180rexbidva 3049 . . . 4  |-  ( ( V  e.  W  /\  a  e.  P )  ->  ( E. b  e.  G  a  =  ( F `  b )  <->  E. b  e.  G  a  =  ( 2nd `  b ) ) )
8277, 81mpbird 247 . . 3  |-  ( ( V  e.  W  /\  a  e.  P )  ->  E. b  e.  G  a  =  ( F `  b ) )
8382ralrimiva 2966 . 2  |-  ( V  e.  W  ->  A. a  e.  P  E. b  e.  G  a  =  ( F `  b ) )
84 dffo3 6374 . 2  |-  ( F : G -onto-> P  <->  ( F : G --> P  /\  A. a  e.  P  E. b  e.  G  a  =  ( F `  b ) ) )
855, 83, 84sylanbrc 698 1  |-  ( V  e.  W  ->  F : G -onto-> P )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   {copab 4712    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888   2ndc2nd 7167    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USPGraph cuspgr 26043  Pairscspr 41727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-upgr 25977  df-uspgr 26045  df-spr 41728
This theorem is referenced by:  uspgrsprf1o  41757
  Copyright terms: Public domain W3C validator