| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elex2 | Structured version Visualization version Unicode version | ||
| Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.) |
| Ref | Expression |
|---|---|
| elex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a 2696 |
. . 3
| |
| 2 | 1 | alrimiv 1855 |
. 2
|
| 3 | elisset 3215 |
. 2
| |
| 4 | exim 1761 |
. 2
| |
| 5 | 2, 3, 4 | sylc 65 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: negn0 10459 nocvxmin 31894 itg2addnclem2 33462 risci 33786 dvh1dimat 36730 |
| Copyright terms: Public domain | W3C validator |