Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxmin Structured version   Visualization version   Unicode version

Theorem nocvxmin 31894
Description: Given a nonempty convex class of surreals, there is a unique birthday-minimal element of that class. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxmin  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E! w  e.  A  ( bday `  w )  = 
|^| ( bday " A
) )
Distinct variable group:    w, A, x, y, z

Proof of Theorem nocvxmin
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . . . 6  |-  ( bday " A )  C_  ran  bday
2 bdayrn 31891 . . . . . 6  |-  ran  bday  =  On
31, 2sseqtri 3637 . . . . 5  |-  ( bday " A )  C_  On
4 bdaydm 31890 . . . . . . . . . . 11  |-  dom  bday  =  No
54sseq2i 3630 . . . . . . . . . 10  |-  ( A 
C_  dom  bday  <->  A  C_  No )
6 bdayfun 31888 . . . . . . . . . . 11  |-  Fun  bday
7 funfvima2 6493 . . . . . . . . . . 11  |-  ( ( Fun  bday  /\  A  C_  dom  bday )  ->  (
x  e.  A  -> 
( bday `  x )  e.  ( bday " A
) ) )
86, 7mpan 706 . . . . . . . . . 10  |-  ( A 
C_  dom  bday  ->  (
x  e.  A  -> 
( bday `  x )  e.  ( bday " A
) ) )
95, 8sylbir 225 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( x  e.  A  ->  ( bday `  x )  e.  ( bday " A
) ) )
10 elex2 3216 . . . . . . . . 9  |-  ( (
bday `  x )  e.  ( bday " A
)  ->  E. w  w  e.  ( bday " A ) )
119, 10syl6 35 . . . . . . . 8  |-  ( A 
C_  No  ->  ( x  e.  A  ->  E. w  w  e.  ( bday " A ) ) )
1211exlimdv 1861 . . . . . . 7  |-  ( A 
C_  No  ->  ( E. x  x  e.  A  ->  E. w  w  e.  ( bday " A
) ) )
13 n0 3931 . . . . . . 7  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
14 n0 3931 . . . . . . 7  |-  ( (
bday " A )  =/=  (/) 
<->  E. w  w  e.  ( bday " A
) )
1512, 13, 143imtr4g 285 . . . . . 6  |-  ( A 
C_  No  ->  ( A  =/=  (/)  ->  ( bday " A )  =/=  (/) ) )
1615impcom 446 . . . . 5  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  ( bday " A )  =/=  (/) )
17 onint 6995 . . . . 5  |-  ( ( ( bday " A
)  C_  On  /\  ( bday " A )  =/=  (/) )  ->  |^| ( bday " A )  e.  ( bday " A
) )
183, 16, 17sylancr 695 . . . 4  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  |^| ( bday " A )  e.  ( bday " A
) )
19 bdayfn 31889 . . . . . 6  |-  bday  Fn  No
20 fvelimab 6253 . . . . . 6  |-  ( (
bday  Fn  No  /\  A  C_  No )  ->  ( |^| ( bday " A
)  e.  ( bday " A )  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) ) )
2119, 20mpan 706 . . . . 5  |-  ( A 
C_  No  ->  ( |^| ( bday " A )  e.  ( bday " A
)  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A
) ) )
2221adantl 482 . . . 4  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  ( |^| ( bday " A
)  e.  ( bday " A )  <->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) ) )
2318, 22mpbid 222 . . 3  |-  ( ( A  =/=  (/)  /\  A  C_  No )  ->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) )
24233adant3 1081 . 2  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E. w  e.  A  ( bday `  w )  =  |^| ( bday " A ) )
25 ssel 3597 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( w  e.  A  ->  w  e.  No ) )
26 ssel 3597 . . . . . . . . 9  |-  ( A 
C_  No  ->  ( t  e.  A  ->  t  e.  No ) )
2725, 26anim12d 586 . . . . . . . 8  |-  ( A 
C_  No  ->  ( ( w  e.  A  /\  t  e.  A )  ->  ( w  e.  No  /\  t  e.  No ) ) )
2827imp 445 . . . . . . 7  |-  ( ( A  C_  No  /\  (
w  e.  A  /\  t  e.  A )
)  ->  ( w  e.  No  /\  t  e.  No ) )
2928ad2ant2r 783 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  -> 
( w  e.  No  /\  t  e.  No ) )
30 nocvxminlem 31893 . . . . . . 7  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( w  e.  A  /\  t  e.  A )  /\  (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  ->  -.  w <s t ) )
3130imp 445 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  -.  w <s t )
32 ancom 466 . . . . . . . . 9  |-  ( ( w  e.  A  /\  t  e.  A )  <->  ( t  e.  A  /\  w  e.  A )
)
33 ancom 466 . . . . . . . . 9  |-  ( ( ( bday `  w
)  =  |^| ( bday " A )  /\  ( bday `  t )  =  |^| ( bday " A
) )  <->  ( ( bday `  t )  = 
|^| ( bday " A
)  /\  ( bday `  w )  =  |^| ( bday " A ) ) )
3432, 33anbi12i 733 . . . . . . . 8  |-  ( ( ( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  <->  ( (
t  e.  A  /\  w  e.  A )  /\  ( ( bday `  t
)  =  |^| ( bday " A )  /\  ( bday `  w )  =  |^| ( bday " A
) ) ) )
35 nocvxminlem 31893 . . . . . . . 8  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( t  e.  A  /\  w  e.  A )  /\  (
( bday `  t )  =  |^| ( bday " A
)  /\  ( bday `  w )  =  |^| ( bday " A ) ) )  ->  -.  t <s w ) )
3634, 35syl5bi 232 . . . . . . 7  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( ( w  e.  A  /\  t  e.  A )  /\  (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) )  ->  -.  t <s w ) )
3736imp 445 . . . . . 6  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  -.  t <s w )
38 slttrieq2 31875 . . . . . . 7  |-  ( ( w  e.  No  /\  t  e.  No )  ->  ( w  =  t  <-> 
( -.  w <s t  /\  -.  t <s w ) ) )
3938biimpar 502 . . . . . 6  |-  ( ( ( w  e.  No  /\  t  e.  No )  /\  ( -.  w <s t  /\  -.  t <s w ) )  ->  w  =  t )
4029, 31, 37, 39syl12anc 1324 . . . . 5  |-  ( ( ( A  C_  No  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z
<s y )  ->  z  e.  A
) )  /\  (
( w  e.  A  /\  t  e.  A
)  /\  ( ( bday `  w )  = 
|^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) ) ) )  ->  w  =  t )
4140exp32 631 . . . 4  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  -> 
( ( w  e.  A  /\  t  e.  A )  ->  (
( ( bday `  w
)  =  |^| ( bday " A )  /\  ( bday `  t )  =  |^| ( bday " A
) )  ->  w  =  t ) ) )
4241ralrimivv 2970 . . 3  |-  ( ( A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  (
( x <s
z  /\  z <s y )  ->  z  e.  A ) )  ->  A. w  e.  A  A. t  e.  A  ( ( ( bday `  w )  =  |^| ( bday " A )  /\  ( bday `  t
)  =  |^| ( bday " A ) )  ->  w  =  t ) )
43423adant1 1079 . 2  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  A. w  e.  A  A. t  e.  A  ( (
( bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) )  ->  w  =  t ) )
44 fveq2 6191 . . . 4  |-  ( w  =  t  ->  ( bday `  w )  =  ( bday `  t
) )
4544eqeq1d 2624 . . 3  |-  ( w  =  t  ->  (
( bday `  w )  =  |^| ( bday " A
)  <->  ( bday `  t
)  =  |^| ( bday " A ) ) )
4645reu4 3400 . 2  |-  ( E! w  e.  A  (
bday `  w )  =  |^| ( bday " A
)  <->  ( E. w  e.  A  ( bday `  w )  =  |^| ( bday " A )  /\  A. w  e.  A  A. t  e.  A  ( ( (
bday `  w )  =  |^| ( bday " A
)  /\  ( bday `  t )  =  |^| ( bday " A ) )  ->  w  =  t ) ) )
4724, 43, 46sylanbrc 698 1  |-  ( ( A  =/=  (/)  /\  A  C_  No  /\  A. x  e.  A  A. y  e.  A  A. z  e.  No  ( ( x <s z  /\  z <s y )  ->  z  e.  A
) )  ->  E! w  e.  A  ( bday `  w )  = 
|^| ( bday " A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914    C_ wss 3574   (/)c0 3915   |^|cint 4475   class class class wbr 4653   dom cdm 5114   ran crn 5115   "cima 5117   Oncon0 5723   Fun wfun 5882    Fn wfn 5883   ` cfv 5888   Nocsur 31793   <scslt 31794   bdaycbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  conway  31910
  Copyright terms: Public domain W3C validator