| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elgch | Structured version Visualization version Unicode version | ||
| Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| elgch |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gch 9443 |
. . . 4
| |
| 2 | 1 | eleq2i 2693 |
. . 3
|
| 3 | elun 3753 |
. . 3
| |
| 4 | 2, 3 | bitri 264 |
. 2
|
| 5 | breq1 4656 |
. . . . . . 7
| |
| 6 | pweq 4161 |
. . . . . . . 8
| |
| 7 | 6 | breq2d 4665 |
. . . . . . 7
|
| 8 | 5, 7 | anbi12d 747 |
. . . . . 6
|
| 9 | 8 | notbid 308 |
. . . . 5
|
| 10 | 9 | albidv 1849 |
. . . 4
|
| 11 | 10 | elabg 3351 |
. . 3
|
| 12 | 11 | orbi2d 738 |
. 2
|
| 13 | 4, 12 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-gch 9443 |
| This theorem is referenced by: gchi 9446 engch 9450 hargch 9495 alephgch 9496 |
| Copyright terms: Public domain | W3C validator |