MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elif Structured version   Visualization version   Unicode version

Theorem elif 4128
Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
elif  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )

Proof of Theorem elif
StepHypRef Expression
1 eleq2 2690 . 2  |-  ( if ( ph ,  B ,  C )  =  B  ->  ( A  e.  if ( ph ,  B ,  C )  <->  A  e.  B ) )
2 eleq2 2690 . 2  |-  ( if ( ph ,  B ,  C )  =  C  ->  ( A  e.  if ( ph ,  B ,  C )  <->  A  e.  C ) )
31, 2elimif 4122 1  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    e. wcel 1990   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  clsk1indlem3  38341
  Copyright terms: Public domain W3C validator