MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifel Structured version   Visualization version   Unicode version

Theorem ifel 4129
Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005.)
Assertion
Ref Expression
ifel  |-  ( if ( ph ,  A ,  B )  e.  C  <->  ( ( ph  /\  A  e.  C )  \/  ( -.  ph  /\  B  e.  C ) ) )

Proof of Theorem ifel
StepHypRef Expression
1 eleq1 2689 . 2  |-  ( if ( ph ,  A ,  B )  =  A  ->  ( if (
ph ,  A ,  B )  e.  C  <->  A  e.  C ) )
2 eleq1 2689 . 2  |-  ( if ( ph ,  A ,  B )  =  B  ->  ( if (
ph ,  A ,  B )  e.  C  <->  B  e.  C ) )
31, 2elimif 4122 1  |-  ( if ( ph ,  A ,  B )  e.  C  <->  ( ( ph  /\  A  e.  C )  \/  ( -.  ph  /\  B  e.  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    e. wcel 1990   ifcif 4086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-if 4087
This theorem is referenced by:  clwlkclwwlklem2a  26899  smatrcl  29862  clsk1independent  38344
  Copyright terms: Public domain W3C validator