| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimif | Structured version Visualization version Unicode version | ||
| Description: Elimination of a
conditional operator contained in a wff |
| Ref | Expression |
|---|---|
| elimif.1 |
|
| elimif.2 |
|
| Ref | Expression |
|---|---|
| elimif |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4092 |
. . 3
| |
| 2 | elimif.1 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | iffalse 4095 |
. . 3
| |
| 5 | elimif.2 |
. . 3
| |
| 6 | 4, 5 | syl 17 |
. 2
|
| 7 | 3, 6 | cases 992 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-if 4087 |
| This theorem is referenced by: eqif 4126 elif 4128 ifel 4129 ftc1anclem5 33489 clsk1indlem2 38340 |
| Copyright terms: Public domain | W3C validator |