MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elneldisjOLD Structured version   Visualization version   Unicode version

Theorem elneldisjOLD 3965
Description: Obsolete version of elneldisj 3963 as of 17-Dec-2021. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
elneldisjOLD.e  |-  E  =  { s  e.  A  |  B  e.  s }
elneldisjOLD.f  |-  N  =  { s  e.  A  |  B  e/  s }
Assertion
Ref Expression
elneldisjOLD  |-  ( E  i^i  N )  =  (/)
Distinct variable group:    A, s
Allowed substitution hints:    B( s)    E( s)    N( s)

Proof of Theorem elneldisjOLD
StepHypRef Expression
1 elneldisjOLD.e . . 3  |-  E  =  { s  e.  A  |  B  e.  s }
2 elneldisjOLD.f . . . 4  |-  N  =  { s  e.  A  |  B  e/  s }
3 df-nel 2898 . . . . . 6  |-  ( B  e/  s  <->  -.  B  e.  s )
43a1i 11 . . . . 5  |-  ( s  e.  A  ->  ( B  e/  s  <->  -.  B  e.  s ) )
54rabbiia 3185 . . . 4  |-  { s  e.  A  |  B  e/  s }  =  {
s  e.  A  |  -.  B  e.  s }
62, 5eqtri 2644 . . 3  |-  N  =  { s  e.  A  |  -.  B  e.  s }
71, 6ineq12i 3812 . 2  |-  ( E  i^i  N )  =  ( { s  e.  A  |  B  e.  s }  i^i  {
s  e.  A  |  -.  B  e.  s } )
8 rabnc 3962 . 2  |-  ( { s  e.  A  |  B  e.  s }  i^i  { s  e.  A  |  -.  B  e.  s } )  =  (/)
97, 8eqtri 2644 1  |-  ( E  i^i  N )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator