MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnelun Structured version   Visualization version   Unicode version

Theorem elnelun 3964
Description: The union of the set of elements  s determining classes  C (which may depend on  s) containing a special element and the set of elements  s determining classes  C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
Hypotheses
Ref Expression
elneldisj.e  |-  E  =  { s  e.  A  |  B  e.  C }
elneldisj.n  |-  N  =  { s  e.  A  |  B  e/  C }
Assertion
Ref Expression
elnelun  |-  ( E  u.  N )  =  A
Distinct variable group:    A, s
Allowed substitution hints:    B( s)    C( s)    E( s)    N( s)

Proof of Theorem elnelun
StepHypRef Expression
1 elneldisj.e . . 3  |-  E  =  { s  e.  A  |  B  e.  C }
2 elneldisj.n . . . 4  |-  N  =  { s  e.  A  |  B  e/  C }
3 df-nel 2898 . . . . . 6  |-  ( B  e/  C  <->  -.  B  e.  C )
43a1i 11 . . . . 5  |-  ( s  e.  A  ->  ( B  e/  C  <->  -.  B  e.  C ) )
54rabbiia 3185 . . . 4  |-  { s  e.  A  |  B  e/  C }  =  {
s  e.  A  |  -.  B  e.  C }
62, 5eqtri 2644 . . 3  |-  N  =  { s  e.  A  |  -.  B  e.  C }
71, 6uneq12i 3765 . 2  |-  ( E  u.  N )  =  ( { s  e.  A  |  B  e.  C }  u.  {
s  e.  A  |  -.  B  e.  C } )
8 rabxm 3961 . 2  |-  A  =  ( { s  e.  A  |  B  e.  C }  u.  {
s  e.  A  |  -.  B  e.  C } )
97, 8eqtr4i 2647 1  |-  ( E  u.  N )  =  A
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916    u. cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rab 2921  df-v 3202  df-un 3579
This theorem is referenced by:  usgrfilem  26219  cusgrsizeinds  26348  vtxdginducedm1  26439
  Copyright terms: Public domain W3C validator