MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsg Structured version   Visualization version   Unicode version

Theorem elqsg 7798
Description: Closed form of elqs 7799. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Distinct variable groups:    x, A    x, B    x, R
Allowed substitution hint:    V( x)

Proof of Theorem elqsg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2626 . . 3  |-  ( y  =  B  ->  (
y  =  [ x ] R  <->  B  =  [
x ] R ) )
21rexbidv 3052 . 2  |-  ( y  =  B  ->  ( E. x  e.  A  y  =  [ x ] R  <->  E. x  e.  A  B  =  [ x ] R ) )
3 df-qs 7748 . 2  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
42, 3elab2g 3353 1  |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   E.wrex 2913   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-qs 7748
This theorem is referenced by:  elqs  7799  elqsi  7800  elqsecl  7801  ecelqsg  7802  elpi1  22845  eldmqsres  34051  prtlem11  34151
  Copyright terms: Public domain W3C validator