HomeHome Metamath Proof Explorer
Theorem List (p. 78 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnawordi 7701 Adding to both sides of an inequality in  om. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 12-May-2012.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  +o  C )  C_  ( B  +o  C ) ) )
 
Theoremnnaass 7702 Addition of natural numbers is associative. Theorem 4K(1) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  +o  C )  =  ( A  +o  ( B  +o  C ) ) )
 
Theoremnndi 7703 Distributive law for natural numbers (left-distributivity). Theorem 4K(3) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  .o  ( B  +o  C ) )  =  ( ( A  .o  B )  +o  ( A  .o  C ) ) )
 
Theoremnnmass 7704 Multiplication of natural numbers is associative. Theorem 4K(4) of [Enderton] p. 81. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  .o  B )  .o  C )  =  ( A  .o  ( B  .o  C ) ) )
 
Theoremnnmsucr 7705 Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( suc  A  .o  B )  =  ( ( A  .o  B )  +o  B ) )
 
Theoremnnmcom 7706 Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  .o  B )  =  ( B  .o  A ) )
 
Theoremnnaword 7707 Weak ordering property of addition. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  <->  ( C  +o  A ) 
 C_  ( C  +o  B ) ) )
 
Theoremnnacan 7708 Cancellation law for addition of natural numbers. (Contributed by NM, 27-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  +o  B )  =  ( A  +o  C )  <->  B  =  C ) )
 
Theoremnnaword1 7709 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( A  +o  B ) )
 
Theoremnnaword2 7710 Weak ordering property of addition. (Contributed by NM, 9-Nov-2002.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  A  C_  ( B  +o  A ) )
 
Theoremnnmordi 7711 Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  e.  B  ->  ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmord 7712 Ordering property of multiplication. Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 22-Jan-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( ( A  e.  B  /\  (/)  e.  C )  <-> 
 ( C  .o  A )  e.  ( C  .o  B ) ) )
 
Theoremnnmword 7713 Weak ordering property of ordinal multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  C )  ->  ( A  C_  B 
 <->  ( C  .o  A )  C_  ( C  .o  B ) ) )
 
Theoremnnmcan 7714 Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( ( A  e.  om  /\  B  e.  om  /\  C  e.  om )  /\  (/)  e.  A )  ->  ( ( A  .o  B )  =  ( A  .o  C ) 
 <->  B  =  C ) )
 
Theoremnnmwordi 7715 Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( C  .o  A )  C_  ( C  .o  B ) ) )
 
Theoremnnmwordri 7716 Weak ordering property of ordinal multiplication. Proposition 8.21 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  e.  om )  ->  ( A  C_  B  ->  ( A  .o  C )  C_  ( B  .o  C ) ) )
 
Theoremnnawordex 7717* Equivalence for weak ordering of natural numbers. (Contributed by NM, 8-Nov-2002.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  C_  B 
 <-> 
 E. x  e.  om  ( A  +o  x )  =  B )
 )
 
Theoremnnaordex 7718* Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( A  e.  B 
 <-> 
 E. x  e.  om  ( (/)  e.  x  /\  ( A  +o  x )  =  B )
 ) )
 
Theorem1onn 7719 One is a natural number. (Contributed by NM, 29-Oct-1995.)
 |- 
 1o  e.  om
 
Theorem2onn 7720 The ordinal 2 is a natural number. (Contributed by NM, 28-Sep-2004.)
 |- 
 2o  e.  om
 
Theorem3onn 7721 The ordinal 3 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 3o  e.  om
 
Theorem4onn 7722 The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |- 
 4o  e.  om
 
Theoremoaabslem 7723 Lemma for oaabs 7724. (Contributed by NM, 9-Dec-2004.)
 |-  ( ( om  e.  On  /\  A  e.  om )  ->  ( A  +o  om )  =  om )
 
Theoremoaabs 7724 Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of [TakeutiZaring] p. 59. (Contributed by NM, 9-Dec-2004.) (Proof shortened by Mario Carneiro, 29-May-2015.)
 |-  ( ( ( A  e.  om  /\  B  e.  On )  /\  om  C_  B )  ->  ( A  +o  B )  =  B )
 
Theoremoaabs2 7725 The absorption law oaabs 7724 is also a property of higher powers of  om. (Contributed by Mario Carneiro, 29-May-2015.)
 |-  ( ( ( A  e.  ( om  ^o  C )  /\  B  e.  On )  /\  ( om  ^o  C )  C_  B )  ->  ( A  +o  B )  =  B )
 
Theoremomabslem 7726 Lemma for omabs 7727. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  ( ( om  e.  On  /\  A  e.  om  /\  (/)  e.  A )  ->  ( A  .o  om )  =  om )
 
Theoremomabs 7727 Ordinal multiplication is also absorbed by powers of  om. (Contributed by Mario Carneiro, 30-May-2015.)
 |-  ( ( ( A  e.  om  /\  (/)  e.  A )  /\  ( B  e.  On  /\  (/)  e.  B ) )  ->  ( A  .o  ( om  ^o  B ) )  =  ( om  ^o  B ) )
 
Theoremnnm1 7728 Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
 
Theoremnnm2 7729 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( A  .o  2o )  =  ( A  +o  A ) )
 
Theoremnn2m 7730 Multiply an element of  om by  2o. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( A  e.  om  ->  ( 2o  .o  A )  =  ( A  +o  A ) )
 
Theoremnnneo 7731 If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
 |-  ( ( A  e.  om 
 /\  B  e.  om  /\  C  =  ( 2o 
 .o  A ) ) 
 ->  -.  suc  C  =  ( 2o  .o  B ) )
 
Theoremnneob 7732* A natural number is even iff its successor is odd. (Contributed by NM, 26-Jan-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
 |-  ( A  e.  om  ->  ( E. x  e. 
 om  A  =  ( 2o  .o  x )  <->  -.  E. x  e.  om  suc 
 A  =  ( 2o 
 .o  x ) ) )
 
Theoremomsmolem 7733* Lemma for omsmo 7734. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
 |-  ( y  e.  om  ->  ( ( ( A 
 C_  On  /\  F : om
 --> A )  /\  A. x  e.  om  ( F `
  x )  e.  ( F `  suc  x ) )  ->  (
 z  e.  y  ->  ( F `  z )  e.  ( F `  y ) ) ) )
 
Theoremomsmo 7734* A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
 |-  ( ( ( A 
 C_  On  /\  F : om
 --> A )  /\  A. x  e.  om  ( F `
  x )  e.  ( F `  suc  x ) )  ->  F : om -1-1-> A )
 
Theoremomopthlem1 7735 Lemma for omopthi 7737. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  A  e.  om   &    |-  C  e.  om   =>    |-  ( A  e.  C  ->  ( ( A  .o  A )  +o  ( A  .o  2o ) )  e.  ( C  .o  C ) )
 
Theoremomopthlem2 7736 Lemma for omopthi 7737. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  A  e.  om   &    |-  B  e.  om   &    |-  C  e.  om   &    |-  D  e.  om   =>    |-  ( ( A  +o  B )  e.  C  ->  -.  ( ( C  .o  C )  +o  D )  =  (
 ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B ) )
 
Theoremomopthi 7737 An ordered pair theorem for  om. Theorem 17.3 of [Quine] p. 124. This proof is adapted from nn0opthi 13057. (Contributed by Scott Fenton, 16-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  A  e.  om   &    |-  B  e.  om   &    |-  C  e.  om   &    |-  D  e.  om   =>    |-  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  (
 ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( A  =  C  /\  B  =  D ) )
 
Theoremomopth 7738 An ordered pair theorem for finite integers. Analogous to nn0opthi 13057. (Contributed by Scott Fenton, 1-May-2012.)
 |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( C  e.  om  /\  D  e.  om ) )  ->  ( ( ( ( A  +o  B )  .o  ( A  +o  B ) )  +o  B )  =  (
 ( ( C  +o  D )  .o  ( C  +o  D ) )  +o  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
2.4.20  Equivalence relations and classes
 
Syntaxwer 7739 Extend the definition of a wff to include the equivalence predicate.
 wff  R  Er  A
 
Syntaxcec 7740 Extend the definition of a class to include equivalence class.
 class  [ A ] R
 
Syntaxcqs 7741 Extend the definition of a class to include quotient set.
 class  ( A /. R )
 
Definitiondf-er 7742 Define the equivalence relation predicate. Our notation is not standard. A formal notation doesn't seem to exist in the literature; instead only informal English tends to be used. The present definition, although somewhat cryptic, nicely avoids dummy variables. In dfer2 7743 we derive a more typical definition. We show that an equivalence relation is reflexive, symmetric, and transitive in erref 7762, ersymb 7756, and ertr 7757. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 2-Nov-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  ( `' R  u.  ( R  o.  R ) ) 
 C_  R ) )
 
Theoremdfer2 7743* Alternate definition of equivalence predicate. (Contributed by NM, 3-Jan-1997.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  <->  ( Rel  R  /\  dom  R  =  A  /\  A. x A. y A. z
 ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) ) )
 
Definitiondf-ec 7744 Define the  R-coset of  A. Exercise 35 of [Enderton] p. 61. This is called the equivalence class of  A modulo  R when  R is an equivalence relation (i.e. when  Er  R; see dfer2 7743). In this case,  A is a representative (member) of the equivalence class  [ A ] R, which contains all sets that are equivalent to  A. Definition of [Enderton] p. 57 uses the notation  [ A ] (subscript)  R, although we simply follow the brackets by  R since we don't have subscripted expressions. For an alternate definition, see dfec2 7745. (Contributed by NM, 23-Jul-1995.)
 |- 
 [ A ] R  =  ( R " { A } )
 
Theoremdfec2 7745* Alternate definition of  R-coset of  A. Definition 34 of [Suppes] p. 81. (Contributed by NM, 3-Jan-1997.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  [ A ] R  =  { y  |  A R y } )
 
Theoremecexg 7746 An equivalence class modulo a set is a set. (Contributed by NM, 24-Jul-1995.)
 |-  ( R  e.  B  ->  [ A ] R  e.  _V )
 
Theoremecexr 7747 A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  [ B ] R  ->  B  e.  _V )
 
Definitiondf-qs 7748* Define quotient set.  R is usually an equivalence relation. Definition of [Enderton] p. 58. (Contributed by NM, 23-Jul-1995.)
 |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
 
Theoremereq1 7749 Equality theorem for equivalence predicate. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  =  S  ->  ( R  Er  A  <->  S  Er  A ) )
 
Theoremereq2 7750 Equality theorem for equivalence predicate. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( A  =  B  ->  ( R  Er  A  <->  R  Er  B ) )
 
Theoremerrel 7751 An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  Rel  R )
 
Theoremerdm 7752 The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  dom  R  =  A )
 
Theoremercl 7753 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  A  e.  X )
 
Theoremersym 7754 An equivalence relation is symmetric. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B R A )
 
Theoremercl2 7755 Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  B  e.  X )
 
Theoremersymb 7756 An equivalence relation is symmetric. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  ( A R B  <->  B R A ) )
 
Theoremertr 7757 An equivalence relation is transitive. (Contributed by NM, 4-Jun-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  (
 ( A R B  /\  B R C ) 
 ->  A R C ) )
 
Theoremertrd 7758 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr2d 7759 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  C R A )
 
Theoremertr3d 7760 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B R A )   &    |-  ( ph  ->  B R C )   =>    |-  ( ph  ->  A R C )
 
Theoremertr4d 7761 A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   &    |-  ( ph  ->  C R B )   =>    |-  ( ph  ->  A R C )
 
Theoremerref 7762 An equivalence relation is reflexive on its field. Compare Theorem 3M of [Enderton] p. 56. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  A R A )
 
Theoremercnv 7763 The converse of an equivalence relation is itself. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  `' R  =  R )
 
Theoremerrn 7764 The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ran  R  =  A )
 
Theoremerssxp 7765 An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  R  C_  ( A  X.  A ) )
 
Theoremerex 7766 An equivalence relation is a set if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( A  e.  V  ->  R  e.  _V )
 )
 
Theoremerexb 7767 An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
 
Theoremiserd 7768* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  Rel  R )   &    |-  ( ( ph  /\  x R y )  ->  y R x )   &    |-  (
 ( ph  /\  ( x R y  /\  y R z ) ) 
 ->  x R z )   &    |-  ( ph  ->  ( x  e.  A  <->  x R x ) )   =>    |-  ( ph  ->  R  Er  A )
 
Theoremiseri 7769* A reflexive, symmetric, transitive relation is an equivalence relation on its domain. Inference version of iserd 7768, which avoids the need to provide a "dummy antecedent"  ph if there is no natural one to choose. (Contributed by AV, 30-Apr-2021.)
 |- 
 Rel  R   &    |-  ( x R y  ->  y R x )   &    |-  ( ( x R y  /\  y R z )  ->  x R z )   &    |-  ( x  e.  A  <->  x R x )   =>    |-  R  Er  A
 
TheoremiseriALT 7770* Alternate proof of iseri 7769, avoiding the usage of trud 1493 and T. as antecedent by using ax-mp 5 and one of the hypotheses as antecedent. This results, however, in a slightly longer proof. (Contributed by AV, 30-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 Rel  R   &    |-  ( x R y  ->  y R x )   &    |-  ( ( x R y  /\  y R z )  ->  x R z )   &    |-  ( x  e.  A  <->  x R x )   =>    |-  R  Er  A
 
Theorembrdifun 7771 Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   =>    |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B 
 <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
 
Theoremswoer 7772* Incomparability under a strict weak partial order is an equivalence relation. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   =>    |-  ( ph  ->  R  Er  X )
 
Theoremswoord1 7773* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( A  .<  C  <->  B  .<  C ) )
 
Theoremswoord2 7774* The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  B  e.  X )   &    |-  ( ph  ->  C  e.  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  ( C  .<  A  <->  C  .<  B ) )
 
Theoremswoso 7775* If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.)
 |-  R  =  ( ( X  X.  X ) 
 \  (  .<  u.  `'  .<  ) )   &    |-  ( ( ph  /\  ( y  e.  X  /\  z  e.  X ) )  ->  ( y 
 .<  z  ->  -.  z  .<  y ) )   &    |-  (
 ( ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  ->  ( x  .<  y  ->  ( x  .<  z  \/  z  .<  y )
 ) )   &    |-  ( ph  ->  Y 
 C_  X )   &    |-  (
 ( ph  /\  ( x  e.  Y  /\  y  e.  Y  /\  x R y ) )  ->  x  =  y )   =>    |-  ( ph  ->  .<  Or  Y )
 
Theoremeqerlem 7776* Lemma for eqer 7777. (Contributed by NM, 17-Mar-2008.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  ( z R w  <->  [_ z  /  x ]_ A  =  [_ w  /  x ]_ A )
 
Theoremeqer 7777* Equivalence relation involving equality of dependent classes  A
( x ) and  B ( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof shortened by AV, 1-May-2021.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  R  Er  _V
 
TheoremeqerOLD 7778* Obsolete proof of eqer 7777 as of 1-May-2021. Equivalence relation involving equality of dependent classes  A ( x ) and  B
( y ). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  y 
 ->  A  =  B )   &    |-  R  =  { <. x ,  y >.  |  A  =  B }   =>    |-  R  Er  _V
 
Theoremider 7779 The identity relation is an equivalence relation. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 9-Jul-2014.)
 |- 
 _I  Er  _V
 
Theorem0er 7780 The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof shortened by AV, 1-May-2021.)
 |-  (/)  Er  (/)
 
Theorem0erOLD 7781 Obsolete proof of 0er 7780 as of 1-May-2021. The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (/)  Er  (/)
 
Theoremeceq1 7782 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq1d 7783 Equality theorem for equivalence class (deduction form). (Contributed by Jim Kingdon, 31-Dec-2019.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  [ A ] C  =  [ B ] C )
 
Theoremeceq2 7784 Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
 
Theoremelecg 7785 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremelec 7786 Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  e.  [ B ] R  <->  B R A )
 
Theoremrelelec 7787 Membership in an equivalence class when  R is a relation. (Contributed by Mario Carneiro, 11-Sep-2015.)
 |-  ( Rel  R  ->  ( A  e.  [ B ] R  <->  B R A ) )
 
Theoremecss 7788 An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   =>    |-  ( ph  ->  [ A ] R  C_  X )
 
Theoremecdmn0 7789 A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  dom  R  <->  [ A ] R  =/=  (/) )
 
Theoremereldm 7790 Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  [ A ] R  =  [ B ] R )   =>    |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
 
Theoremerth 7791 Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerth2 7792 Basic property of equivalence relations. Compare Theorem 73 of [Suppes] p. 82. Assumes membership of the second argument in the domain. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  B  e.  X )   =>    |-  ( ph  ->  ( A R B  <->  [ A ] R  =  [ B ] R ) )
 
Theoremerthi 7793 Basic property of equivalence relations. Part of Lemma 3N of [Enderton] p. 57. (Contributed by NM, 30-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Er  X )   &    |-  ( ph  ->  A R B )   =>    |-  ( ph  ->  [ A ] R  =  [ B ] R )
 
Theoremerdisj 7794 Equivalence classes do not overlap. In other words, two equivalence classes are either equal or disjoint. Theorem 74 of [Suppes] p. 83. (Contributed by NM, 15-Jun-2004.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( R  Er  X  ->  ( [ A ] R  =  [ B ] R  \/  ( [ A ] R  i^i  [ B ] R )  =  (/) ) )
 
Theoremecidsn 7795 An equivalence class modulo the identity relation is a singleton. (Contributed by NM, 24-Oct-2004.)
 |- 
 [ A ]  _I  =  { A }
 
Theoremqseq1 7796 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( A /. C )  =  ( B /. C ) )
 
Theoremqseq2 7797 Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( A  =  B  ->  ( C /. A )  =  ( C /. B ) )
 
Theoremelqsg 7798* Closed form of elqs 7799. (Contributed by Rodolfo Medina, 12-Oct-2010.)
 |-  ( B  e.  V  ->  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R ) )
 
Theoremelqs 7799* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  B  e.  _V   =>    |-  ( B  e.  ( A /. R )  <->  E. x  e.  A  B  =  [ x ] R )
 
Theoremelqsi 7800* Membership in a quotient set. (Contributed by NM, 23-Jul-1995.)
 |-  ( B  e.  ( A /. R )  ->  E. x  e.  A  B  =  [ x ] R )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >