Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqsres Structured version   Visualization version   Unicode version

Theorem eldmqsres 34051
Description: Elementhood in a restricted domain quotient set. (Contributed by Peter Mazsa, 21-Aug-2020.)
Assertion
Ref Expression
eldmqsres  |-  ( B  e.  V  ->  ( B  e.  ( dom  ( R  |`  A ) /. ( R  |`  A ) )  <->  E. u  e.  A  ( E. x  x  e.  [ u ] R  /\  B  =  [ u ] R
) ) )
Distinct variable groups:    u, A, x    u, B    u, R, x
Allowed substitution hints:    B( x)    V( x, u)

Proof of Theorem eldmqsres
StepHypRef Expression
1 elqsg 7798 . 2  |-  ( B  e.  V  ->  ( B  e.  ( dom  ( R  |`  A ) /. ( R  |`  A ) )  <->  E. u  e.  dom  ( R  |`  A ) B  =  [ u ] ( R  |`  A )
) )
2 eldmres2 34038 . . . . . 6  |-  ( u  e.  _V  ->  (
u  e.  dom  ( R  |`  A )  <->  ( u  e.  A  /\  E. x  x  e.  [ u ] R ) ) )
32elv 33983 . . . . 5  |-  ( u  e.  dom  ( R  |`  A )  <->  ( u  e.  A  /\  E. x  x  e.  [ u ] R ) )
43anbi1i 731 . . . 4  |-  ( ( u  e.  dom  ( R  |`  A )  /\  B  =  [ u ] ( R  |`  A ) )  <->  ( (
u  e.  A  /\  E. x  x  e.  [
u ] R )  /\  B  =  [
u ] ( R  |`  A ) ) )
5 ecres2 34044 . . . . . . . 8  |-  ( u  e.  A  ->  [ u ] ( R  |`  A )  =  [
u ] R )
65eqeq2d 2632 . . . . . . 7  |-  ( u  e.  A  ->  ( B  =  [ u ] ( R  |`  A )  <->  B  =  [ u ] R
) )
76pm5.32i 669 . . . . . 6  |-  ( ( u  e.  A  /\  B  =  [ u ] ( R  |`  A ) )  <->  ( u  e.  A  /\  B  =  [ u ] R
) )
87anbi2i 730 . . . . 5  |-  ( ( E. x  x  e. 
[ u ] R  /\  ( u  e.  A  /\  B  =  [
u ] ( R  |`  A ) ) )  <-> 
( E. x  x  e.  [ u ] R  /\  ( u  e.  A  /\  B  =  [ u ] R
) ) )
9 3ancoma 1045 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  x  e.  [
u ] R  /\  B  =  [ u ] ( R  |`  A ) )  <->  ( E. x  x  e.  [ u ] R  /\  u  e.  A  /\  B  =  [ u ] ( R  |`  A )
) )
10 df-3an 1039 . . . . . 6  |-  ( ( u  e.  A  /\  E. x  x  e.  [
u ] R  /\  B  =  [ u ] ( R  |`  A ) )  <->  ( (
u  e.  A  /\  E. x  x  e.  [
u ] R )  /\  B  =  [
u ] ( R  |`  A ) ) )
11 3anass 1042 . . . . . 6  |-  ( ( E. x  x  e. 
[ u ] R  /\  u  e.  A  /\  B  =  [
u ] ( R  |`  A ) )  <->  ( E. x  x  e.  [ u ] R  /\  (
u  e.  A  /\  B  =  [ u ] ( R  |`  A ) ) ) )
129, 10, 113bitr3i 290 . . . . 5  |-  ( ( ( u  e.  A  /\  E. x  x  e. 
[ u ] R
)  /\  B  =  [ u ] ( R  |`  A )
)  <->  ( E. x  x  e.  [ u ] R  /\  (
u  e.  A  /\  B  =  [ u ] ( R  |`  A ) ) ) )
13 an12 838 . . . . 5  |-  ( ( u  e.  A  /\  ( E. x  x  e. 
[ u ] R  /\  B  =  [
u ] R ) )  <->  ( E. x  x  e.  [ u ] R  /\  (
u  e.  A  /\  B  =  [ u ] R ) ) )
148, 12, 133bitr4i 292 . . . 4  |-  ( ( ( u  e.  A  /\  E. x  x  e. 
[ u ] R
)  /\  B  =  [ u ] ( R  |`  A )
)  <->  ( u  e.  A  /\  ( E. x  x  e.  [
u ] R  /\  B  =  [ u ] R ) ) )
154, 14bitri 264 . . 3  |-  ( ( u  e.  dom  ( R  |`  A )  /\  B  =  [ u ] ( R  |`  A ) )  <->  ( u  e.  A  /\  ( E. x  x  e.  [ u ] R  /\  B  =  [ u ] R ) ) )
1615rexbii2 3039 . 2  |-  ( E. u  e.  dom  ( R  |`  A ) B  =  [ u ]
( R  |`  A )  <->  E. u  e.  A  ( E. x  x  e. 
[ u ] R  /\  B  =  [
u ] R ) )
171, 16syl6bb 276 1  |-  ( B  e.  V  ->  ( B  e.  ( dom  ( R  |`  A ) /. ( R  |`  A ) )  <->  E. u  e.  A  ( E. x  x  e.  [ u ] R  /\  B  =  [ u ] R
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   _Vcvv 3200   dom cdm 5114    |` cres 5116   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748
This theorem is referenced by:  eldmqsres2  34052
  Copyright terms: Public domain W3C validator