MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsecl Structured version   Visualization version   Unicode version

Theorem elqsecl 7801
Description: Membership in a quotient set by an equivalence class according to  .~. (Contributed by Alexander van der Vekens, 12-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Assertion
Ref Expression
elqsecl  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  { y  |  x  .~  y } ) )
Distinct variable groups:    x,  .~ , y    x, B    x, W    x, X
Allowed substitution hints:    B( y)    W( y)    X( y)

Proof of Theorem elqsecl
StepHypRef Expression
1 elqsg 7798 . 2  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  [ x ]  .~  ) )
2 vex 3203 . . . . 5  |-  x  e. 
_V
3 dfec2 7745 . . . . 5  |-  ( x  e.  _V  ->  [ x ]  .~  =  { y  |  x  .~  y } )
42, 3mp1i 13 . . . 4  |-  ( B  e.  X  ->  [ x ]  .~  =  { y  |  x  .~  y } )
54eqeq2d 2632 . . 3  |-  ( B  e.  X  ->  ( B  =  [ x ]  .~  <->  B  =  {
y  |  x  .~  y } ) )
65rexbidv 3052 . 2  |-  ( B  e.  X  ->  ( E. x  e.  W  B  =  [ x ]  .~  <->  E. x  e.  W  B  =  { y  |  x  .~  y } ) )
71, 6bitrd 268 1  |-  ( B  e.  X  ->  ( B  e.  ( W /.  .~  )  <->  E. x  e.  W  B  =  { y  |  x  .~  y } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   [cec 7740   /.cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ec 7744  df-qs 7748
This theorem is referenced by:  eclclwwlksn1  26952
  Copyright terms: Public domain W3C validator