MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsucg Structured version   Visualization version   Unicode version

Theorem elsucg 5792
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
elsucg  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsucg
StepHypRef Expression
1 df-suc 5729 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2693 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3753 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 264 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsng 4191 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
65orbi2d 738 . 2  |-  ( A  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
74, 6syl5bb 272 1  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    u. cun 3572   {csn 4177   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-suc 5729
This theorem is referenced by:  elsuc  5794  elelsuc  5797  sucidg  5803  ordsssuc  5812  ordsucelsuc  7022  suc11reg  8516  nlt1pi  9728
  Copyright terms: Public domain W3C validator