| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suc11reg | Structured version Visualization version Unicode version | ||
| Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.) |
| Ref | Expression |
|---|---|
| suc11reg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp 8510 |
. . . . 5
| |
| 2 | ianor 509 |
. . . . 5
| |
| 3 | 1, 2 | mpbi 220 |
. . . 4
|
| 4 | sucidg 5803 |
. . . . . . . . . . 11
| |
| 5 | eleq2 2690 |
. . . . . . . . . . 11
| |
| 6 | 4, 5 | syl5ibcom 235 |
. . . . . . . . . 10
|
| 7 | elsucg 5792 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | sylibd 229 |
. . . . . . . . 9
|
| 9 | 8 | imp 445 |
. . . . . . . 8
|
| 10 | 9 | ord 392 |
. . . . . . 7
|
| 11 | 10 | ex 450 |
. . . . . 6
|
| 12 | 11 | com23 86 |
. . . . 5
|
| 13 | sucidg 5803 |
. . . . . . . . . . . 12
| |
| 14 | eleq2 2690 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | syl5ibrcom 237 |
. . . . . . . . . . 11
|
| 16 | elsucg 5792 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | sylibd 229 |
. . . . . . . . . 10
|
| 18 | 17 | imp 445 |
. . . . . . . . 9
|
| 19 | 18 | ord 392 |
. . . . . . . 8
|
| 20 | eqcom 2629 |
. . . . . . . 8
| |
| 21 | 19, 20 | syl6ib 241 |
. . . . . . 7
|
| 22 | 21 | ex 450 |
. . . . . 6
|
| 23 | 22 | com23 86 |
. . . . 5
|
| 24 | 12, 23 | jaao 531 |
. . . 4
|
| 25 | 3, 24 | mpi 20 |
. . 3
|
| 26 | sucexb 7009 |
. . . . 5
| |
| 27 | sucexb 7009 |
. . . . . 6
| |
| 28 | 27 | notbii 310 |
. . . . 5
|
| 29 | nelneq 2725 |
. . . . 5
| |
| 30 | 26, 28, 29 | syl2anb 496 |
. . . 4
|
| 31 | 30 | pm2.21d 118 |
. . 3
|
| 32 | eqcom 2629 |
. . . 4
| |
| 33 | 26 | notbii 310 |
. . . . . . 7
|
| 34 | nelneq 2725 |
. . . . . . 7
| |
| 35 | 27, 33, 34 | syl2anb 496 |
. . . . . 6
|
| 36 | 35 | ancoms 469 |
. . . . 5
|
| 37 | 36 | pm2.21d 118 |
. . . 4
|
| 38 | 32, 37 | syl5bi 232 |
. . 3
|
| 39 | sucprc 5800 |
. . . . 5
| |
| 40 | sucprc 5800 |
. . . . 5
| |
| 41 | 39, 40 | eqeqan12d 2638 |
. . . 4
|
| 42 | 41 | biimpd 219 |
. . 3
|
| 43 | 25, 31, 38, 42 | 4cases 990 |
. 2
|
| 44 | suceq 5790 |
. 2
| |
| 45 | 43, 44 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-eprel 5029 df-fr 5073 df-suc 5729 |
| This theorem is referenced by: rankxpsuc 8745 bnj551 30812 1oequni2o 33216 clsk1indlem1 38343 |
| Copyright terms: Public domain | W3C validator |