| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en3lplem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for en3lp 8513. (Contributed by Alan Sare, 28-Oct-2011.) |
| Ref | Expression |
|---|---|
| en3lplem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en3lplem1 8511 |
. . . . 5
| |
| 2 | en3lplem1 8511 |
. . . . . . . 8
| |
| 3 | 2 | 3comr 1273 |
. . . . . . 7
|
| 4 | 3 | a1d 25 |
. . . . . 6
|
| 5 | tprot 4284 |
. . . . . . . . 9
| |
| 6 | 5 | ineq2i 3811 |
. . . . . . . 8
|
| 7 | 6 | neeq1i 2858 |
. . . . . . 7
|
| 8 | 7 | bicomi 214 |
. . . . . 6
|
| 9 | 4, 8 | syl8ib 246 |
. . . . 5
|
| 10 | jao 534 |
. . . . 5
| |
| 11 | 1, 9, 10 | sylsyld 61 |
. . . 4
|
| 12 | 11 | imp 445 |
. . 3
|
| 13 | en3lplem1 8511 |
. . . . . . 7
| |
| 14 | 13 | 3coml 1272 |
. . . . . 6
|
| 15 | 14 | a1d 25 |
. . . . 5
|
| 16 | tprot 4284 |
. . . . . . 7
| |
| 17 | 16 | ineq2i 3811 |
. . . . . 6
|
| 18 | 17 | neeq1i 2858 |
. . . . 5
|
| 19 | 15, 18 | syl8ib 246 |
. . . 4
|
| 20 | 19 | imp 445 |
. . 3
|
| 21 | idd 24 |
. . . . . . 7
| |
| 22 | dftp2 4231 |
. . . . . . . 8
| |
| 23 | 22 | eleq2i 2693 |
. . . . . . 7
|
| 24 | 21, 23 | syl6ib 241 |
. . . . . 6
|
| 25 | abid 2610 |
. . . . . 6
| |
| 26 | 24, 25 | syl6ib 241 |
. . . . 5
|
| 27 | df-3or 1038 |
. . . . 5
| |
| 28 | 26, 27 | syl6ib 241 |
. . . 4
|
| 29 | 28 | imp 445 |
. . 3
|
| 30 | 12, 20, 29 | mpjaod 396 |
. 2
|
| 31 | 30 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
| This theorem is referenced by: en3lp 8513 |
| Copyright terms: Public domain | W3C validator |