MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem2 Structured version   Visualization version   Unicode version

Theorem en3lplem2 8512
Description: Lemma for en3lp 8513. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem2  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem en3lplem2
StepHypRef Expression
1 en3lplem1 8511 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  A  ->  ( x  i^i 
{ A ,  B ,  C } )  =/=  (/) ) )
2 en3lplem1 8511 . . . . . . . 8  |-  ( ( B  e.  C  /\  C  e.  A  /\  A  e.  B )  ->  ( x  =  B  ->  ( x  i^i 
{ B ,  C ,  A } )  =/=  (/) ) )
323comr 1273 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  B  ->  ( x  i^i 
{ B ,  C ,  A } )  =/=  (/) ) )
43a1d 25 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  B  ->  (
x  i^i  { B ,  C ,  A }
)  =/=  (/) ) ) )
5 tprot 4284 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
65ineq2i 3811 . . . . . . . 8  |-  ( x  i^i  { A ,  B ,  C }
)  =  ( x  i^i  { B ,  C ,  A }
)
76neeq1i 2858 . . . . . . 7  |-  ( ( x  i^i  { A ,  B ,  C }
)  =/=  (/)  <->  ( x  i^i  { B ,  C ,  A } )  =/=  (/) )
87bicomi 214 . . . . . 6  |-  ( ( x  i^i  { B ,  C ,  A }
)  =/=  (/)  <->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
94, 8syl8ib 246 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  B  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) ) ) )
10 jao 534 . . . . 5  |-  ( ( x  =  A  -> 
( x  i^i  { A ,  B ,  C } )  =/=  (/) )  -> 
( ( x  =  B  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )  ->  ( ( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) ) )
111, 9, 10sylsyld 61 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( ( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) ) )
1211imp 445 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
( x  =  A  \/  x  =  B )  ->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
13 en3lplem1 8511 . . . . . . 7  |-  ( ( C  e.  A  /\  A  e.  B  /\  B  e.  C )  ->  ( x  =  C  ->  ( x  i^i 
{ C ,  A ,  B } )  =/=  (/) ) )
14133coml 1272 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  =  C  ->  ( x  i^i 
{ C ,  A ,  B } )  =/=  (/) ) )
1514a1d 25 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  C  ->  (
x  i^i  { C ,  A ,  B }
)  =/=  (/) ) ) )
16 tprot 4284 . . . . . . 7  |-  { C ,  A ,  B }  =  { A ,  B ,  C }
1716ineq2i 3811 . . . . . 6  |-  ( x  i^i  { C ,  A ,  B }
)  =  ( x  i^i  { A ,  B ,  C }
)
1817neeq1i 2858 . . . . 5  |-  ( ( x  i^i  { C ,  A ,  B }
)  =/=  (/)  <->  ( x  i^i  { A ,  B ,  C } )  =/=  (/) )
1915, 18syl8ib 246 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  C  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) ) ) )
2019imp 445 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
x  =  C  -> 
( x  i^i  { A ,  B ,  C } )  =/=  (/) ) )
21 idd 24 . . . . . . 7  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  x  e. 
{ A ,  B ,  C } ) )
22 dftp2 4231 . . . . . . . 8  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
2322eleq2i 2693 . . . . . . 7  |-  ( x  e.  { A ,  B ,  C }  <->  x  e.  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) } )
2421, 23syl6ib 241 . . . . . 6  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  x  e. 
{ x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) } ) )
25 abid 2610 . . . . . 6  |-  ( x  e.  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }  <->  ( x  =  A  \/  x  =  B  \/  x  =  C ) )
2624, 25syl6ib 241 . . . . 5  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  =  A  \/  x  =  B  \/  x  =  C ) ) )
27 df-3or 1038 . . . . 5  |-  ( ( x  =  A  \/  x  =  B  \/  x  =  C )  <->  ( ( x  =  A  \/  x  =  B )  \/  x  =  C ) )
2826, 27syl6ib 241 . . . 4  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( ( x  =  A  \/  x  =  B )  \/  x  =  C
) ) )
2928imp 445 . . 3  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
( x  =  A  \/  x  =  B )  \/  x  =  C ) )
3012, 20, 29mpjaod 396 . 2  |-  ( ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A
)  /\  x  e.  { A ,  B ,  C } )  ->  (
x  i^i  { A ,  B ,  C }
)  =/=  (/) )
3130ex 450 1  |-  ( ( A  e.  B  /\  B  e.  C  /\  C  e.  A )  ->  ( x  e.  { A ,  B ,  C }  ->  ( x  i^i  { A ,  B ,  C }
)  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794    i^i cin 3573   (/)c0 3915   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  en3lp  8513
  Copyright terms: Public domain W3C validator