| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrrdv | Structured version Visualization version Unicode version | ||
| Description: Deduction from extensionality principle for relations. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| eqbrrdv.1 |
|
| eqbrrdv.2 |
|
| eqbrrdv.3 |
|
| Ref | Expression |
|---|---|
| eqbrrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrrdv.3 |
. . . 4
| |
| 2 | df-br 4654 |
. . . 4
| |
| 3 | df-br 4654 |
. . . 4
| |
| 4 | 1, 2, 3 | 3bitr3g 302 |
. . 3
|
| 5 | 4 | alrimivv 1856 |
. 2
|
| 6 | eqbrrdv.1 |
. . 3
| |
| 7 | eqbrrdv.2 |
. . 3
| |
| 8 | eqrel 5209 |
. . 3
| |
| 9 | 6, 7, 8 | syl2anc 693 |
. 2
|
| 10 | 5, 9 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: eqbrrdva 5291 oppcsect2 16439 |
| Copyright terms: Public domain | W3C validator |