| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrelrdv | Structured version Visualization version Unicode version | ||
| Description: Deduce equality of relations from equivalence of membership. (Contributed by Rodolfo Medina, 10-Oct-2010.) |
| Ref | Expression |
|---|---|
| eqrelrdv.1 |
|
| eqrelrdv.2 |
|
| eqrelrdv.3 |
|
| Ref | Expression |
|---|---|
| eqrelrdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrdv.3 |
. . 3
| |
| 2 | 1 | alrimivv 1856 |
. 2
|
| 3 | eqrelrdv.1 |
. . 3
| |
| 4 | eqrelrdv.2 |
. . 3
| |
| 5 | eqrel 5209 |
. . 3
| |
| 6 | 3, 4, 5 | mp2an 708 |
. 2
|
| 7 | 2, 6 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 df-opab 4713 df-xp 5120 df-rel 5121 |
| This theorem is referenced by: eqbrrdiv 5218 fcnvres 6082 fmptco 6396 fpwwe2lem8 9459 fpwwe2lem12 9463 fsumcom2 14505 fsumcom2OLD 14506 fprodcom2 14714 fprodcom2OLD 14715 gsumcom2 18374 lgsquadlem1 25105 lgsquadlem2 25106 fmptcof2 29457 dfcnv2 29476 dih1dimatlem 36618 |
| Copyright terms: Public domain | W3C validator |