| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeu | Structured version Visualization version Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqeu.1 |
|
| Ref | Expression |
|---|---|
| eqeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 |
. . . . 5
| |
| 2 | 1 | spcegv 3294 |
. . . 4
|
| 3 | 2 | imp 445 |
. . 3
|
| 4 | 3 | 3adant3 1081 |
. 2
|
| 5 | eqeq2 2633 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 330 |
. . . . . 6
|
| 7 | 6 | albidv 1849 |
. . . . 5
|
| 8 | 7 | spcegv 3294 |
. . . 4
|
| 9 | 8 | imp 445 |
. . 3
|
| 10 | 9 | 3adant2 1080 |
. 2
|
| 11 | eu3v 2498 |
. 2
| |
| 12 | 4, 10, 11 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: rngurd 29788 neibastop3 32357 upixp 33524 zrinitorngc 42000 zrtermorngc 42001 zrtermoringc 42070 |
| Copyright terms: Public domain | W3C validator |