Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop3 Structured version   Visualization version   Unicode version

Theorem neibastop3 32357
Description: The topology generated by a neighborhood base is unique. (Contributed by Jeff Hankins, 16-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1  |-  ( ph  ->  X  e.  V )
neibastop1.2  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
neibastop1.3  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
neibastop1.4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
neibastop1.5  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
neibastop1.6  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
Assertion
Ref Expression
neibastop3  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Distinct variable groups:    t, n, v, y, j, x    j, J    x, n, J, v, y    t, o, v, w, x, y, j, F, n    ph, j, n, o, t, v, w, x, y    j, X, n, o, t, v, w, x, y
Allowed substitution hints:    J( w, t, o)    V( x, y, w, v, t, j, n, o)

Proof of Theorem neibastop3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . 4  |-  ( ph  ->  X  e.  V )
2 neibastop1.2 . . . 4  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
3 neibastop1.3 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
4 neibastop1.4 . . . 4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
51, 2, 3, 4neibastop1 32354 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 neibastop1.5 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
7 neibastop1.6 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
81, 2, 3, 4, 6, 7neibastop2 32356 . . . . . . . 8  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  C_  X  /\  ( ( F `
 z )  i^i 
~P n )  =/=  (/) ) ) )
9 selpw 4165 . . . . . . . . 9  |-  ( n  e.  ~P X  <->  n  C_  X
)
109anbi1i 731 . . . . . . . 8  |-  ( ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) )  <->  ( n  C_  X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
118, 10syl6bbr 278 . . . . . . 7  |-  ( (
ph  /\  z  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { z } )  <->  ( n  e. 
~P X  /\  (
( F `  z
)  i^i  ~P n
)  =/=  (/) ) ) )
1211abbi2dv 2742 . . . . . 6  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  |  ( n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) } )
13 df-rab 2921 . . . . . 6  |-  { n  e.  ~P X  |  ( ( F `  z
)  i^i  ~P n
)  =/=  (/) }  =  { n  |  (
n  e.  ~P X  /\  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) }
1412, 13syl6eqr 2674 . . . . 5  |-  ( (
ph  /\  z  e.  X )  ->  (
( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
1514ralrimiva 2966 . . . 4  |-  ( ph  ->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
16 sneq 4187 . . . . . . 7  |-  ( x  =  z  ->  { x }  =  { z } )
1716fveq2d 6195 . . . . . 6  |-  ( x  =  z  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { z } ) )
18 fveq2 6191 . . . . . . . . 9  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1918ineq1d 3813 . . . . . . . 8  |-  ( x  =  z  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  z )  i^i  ~P n ) )
2019neeq1d 2853 . . . . . . 7  |-  ( x  =  z  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  z )  i^i  ~P n )  =/=  (/) ) )
2120rabbidv 3189 . . . . . 6  |-  ( x  =  z  ->  { n  e.  ~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } )
2217, 21eqeq12d 2637 . . . . 5  |-  ( x  =  z  ->  (
( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
z } )  =  { n  e.  ~P X  |  ( ( F `  z )  i^i  ~P n )  =/=  (/) } ) )
2322cbvralv 3171 . . . 4  |-  ( A. x  e.  X  (
( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. z  e.  X  ( ( nei `  J
) `  { z } )  =  {
n  e.  ~P X  |  ( ( F `
 z )  i^i 
~P n )  =/=  (/) } )
2415, 23sylibr 224 . . 3  |-  ( ph  ->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
25 toponuni 20719 . . . . . . . . . 10  |-  ( j  e.  (TopOn `  X
)  ->  X  =  U. j )
26 eqimss2 3658 . . . . . . . . . 10  |-  ( X  =  U. j  ->  U. j  C_  X )
2725, 26syl 17 . . . . . . . . 9  |-  ( j  e.  (TopOn `  X
)  ->  U. j  C_  X )
28 sspwuni 4611 . . . . . . . . 9  |-  ( j 
C_  ~P X  <->  U. j  C_  X )
2927, 28sylibr 224 . . . . . . . 8  |-  ( j  e.  (TopOn `  X
)  ->  j  C_  ~P X )
3029ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  C_  ~P X )
31 sseqin2 3817 . . . . . . 7  |-  ( j 
C_  ~P X  <->  ( ~P X  i^i  j )  =  j )
3230, 31sylib 208 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  j )
33 topontop 20718 . . . . . . . . . . 11  |-  ( j  e.  (TopOn `  X
)  ->  j  e.  Top )
3433ad3antlr 767 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
j  e.  Top )
35 eltop2 20779 . . . . . . . . . 10  |-  ( j  e.  Top  ->  (
o  e.  j  <->  A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
3634, 35syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o  E. z  e.  j 
( x  e.  z  /\  z  C_  o
) ) )
37 elpwi 4168 . . . . . . . . . . . . . . 15  |-  ( o  e.  ~P X  -> 
o  C_  X )
38 ssralv 3666 . . . . . . . . . . . . . . 15  |-  ( o 
C_  X  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
3937, 38syl 17 . . . . . . . . . . . . . 14  |-  ( o  e.  ~P X  -> 
( A. x  e.  X  ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
4039adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
41 simprr 796 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )
4241eleq2d 2687 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  o  e.  { n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
4333ad3antlr 767 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
j  e.  Top )
4425adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  X  =  U. j )
4544sseq2d 3633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  (TopOn `  X ) )  ->  ( o  C_  X 
<->  o  C_  U. j
) )
4645biimpa 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  C_  X )  ->  o  C_ 
U. j )
4737, 46sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  o  C_ 
U. j )
4847sselda 3603 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  x  e.  U. j
)
4948adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  ->  x  e.  U. j
)
5047adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
o  C_  U. j
)
51 eqid 2622 . . . . . . . . . . . . . . . . . . 19  |-  U. j  =  U. j
5251isneip 20909 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Top  /\  x  e.  U. j
)  ->  ( o  e.  ( ( nei `  j
) `  { x } )  <->  ( o  C_ 
U. j  /\  E. z  e.  j  (
x  e.  z  /\  z  C_  o ) ) ) )
5352baibd 948 . . . . . . . . . . . . . . . . 17  |-  ( ( ( j  e.  Top  /\  x  e.  U. j
)  /\  o  C_  U. j )  ->  (
o  e.  ( ( nei `  j ) `
 { x }
)  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o
) ) )
5443, 49, 50, 53syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  ( ( nei `  j
) `  { x } )  <->  E. z  e.  j  ( x  e.  z  /\  z  C_  o ) ) )
55 pweq 4161 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  o  ->  ~P n  =  ~P o
)
5655ineq2d 3814 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  o  ->  (
( F `  x
)  i^i  ~P n
)  =  ( ( F `  x )  i^i  ~P o ) )
5756neeq1d 2853 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  o  ->  (
( ( F `  x )  i^i  ~P n )  =/=  (/)  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
5857elrab3 3364 . . . . . . . . . . . . . . . . 17  |-  ( o  e.  ~P X  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
5958ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( o  e.  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) ) )
6042, 54, 593bitr3d 298 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  ( x  e.  o  /\  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )  -> 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6160expr 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  x  e.  o )  ->  ( ( ( nei `  j ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) }  ->  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6261ralimdva 2962 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  o 
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6340, 62syld 47 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  o  e.  ~P X )  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) ) )
6463imp 445 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  o  e.  ~P X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  A. x  e.  o  ( E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6564an32s 846 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  ->  A. x  e.  o 
( E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
66 ralbi 3068 . . . . . . . . . 10  |-  ( A. x  e.  o  ( E. z  e.  j 
( x  e.  z  /\  z  C_  o
)  <->  ( ( F `
 x )  i^i 
~P o )  =/=  (/) )  ->  ( A. x  e.  o  E. z  e.  j  (
x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6765, 66syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( A. x  e.  o  E. z  e.  j  ( x  e.  z  /\  z  C_  o )  <->  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6836, 67bitrd 268 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  (TopOn `  X
) )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  /\  o  e.  ~P X )  -> 
( o  e.  j  <->  A. x  e.  o 
( ( F `  x )  i^i  ~P o )  =/=  (/) ) )
6968rabbi2dva 3821 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  {
o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) } )
7069, 4syl6eqr 2674 . . . . . 6  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  ( ~P X  i^i  j )  =  J )
7132, 70eqtr3d 2658 . . . . 5  |-  ( ( ( ph  /\  j  e.  (TopOn `  X )
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  ->  j  =  J )
7271expl 648 . . . 4  |-  ( ph  ->  ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
7372alrimiv 1855 . . 3  |-  ( ph  ->  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )
74 eleq1 2689 . . . . 5  |-  ( j  =  J  ->  (
j  e.  (TopOn `  X )  <->  J  e.  (TopOn `  X ) ) )
75 fveq2 6191 . . . . . . . 8  |-  ( j  =  J  ->  ( nei `  j )  =  ( nei `  J
) )
7675fveq1d 6193 . . . . . . 7  |-  ( j  =  J  ->  (
( nei `  j
) `  { x } )  =  ( ( nei `  J
) `  { x } ) )
7776eqeq1d 2624 . . . . . 6  |-  ( j  =  J  ->  (
( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  ( ( nei `  J ) `  {
x } )  =  { n  e.  ~P X  |  ( ( F `  x )  i^i  ~P n )  =/=  (/) } ) )
7877ralbidv 2986 . . . . 5  |-  ( j  =  J  ->  ( A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) }  <->  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
7974, 78anbi12d 747 . . . 4  |-  ( j  =  J  ->  (
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  <->  ( J  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  J
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) ) )
8079eqeu 3377 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  J ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )  /\  A. j ( ( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } )  ->  j  =  J ) )  ->  E! j ( j  e.  (TopOn `  X )  /\  A. x  e.  X  ( ( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
815, 5, 24, 73, 80syl121anc 1331 . 2  |-  ( ph  ->  E! j ( j  e.  (TopOn `  X
)  /\  A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } ) )
82 df-reu 2919 . 2  |-  ( E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) }  <->  E! j
( j  e.  (TopOn `  X )  /\  A. x  e.  X  (
( nei `  j
) `  { x } )  =  {
n  e.  ~P X  |  ( ( F `
 x )  i^i 
~P n )  =/=  (/) } ) )
8381, 82sylibr 224 1  |-  ( ph  ->  E! j  e.  (TopOn `  X ) A. x  e.  X  ( ( nei `  j ) `  { x } )  =  { n  e. 
~P X  |  ( ( F `  x
)  i^i  ~P n
)  =/=  (/) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E!weu 2470   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   U.cuni 4436   -->wf 5884   ` cfv 5888   Topctop 20698  TopOnctopon 20715   neicnei 20901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-topgen 16104  df-top 20699  df-topon 20716  df-nei 20902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator