Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngurd Structured version   Visualization version   Unicode version

Theorem rngurd 29788
Description: Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.)
Hypotheses
Ref Expression
rngurd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
rngurd.p  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
rngurd.z  |-  ( ph  ->  .1.  e.  B )
rngurd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
rngurd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
Assertion
Ref Expression
rngurd  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
Distinct variable groups:    x, B    x, R    x,  .1.    x,  .x.    ph, x

Proof of Theorem rngurd
Dummy variable  e is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
2 eqid 2622 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 eqid 2622 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
41, 2, 3dfur2 18504 . 2  |-  ( 1r
`  R )  =  ( iota e ( e  e.  ( Base `  R )  /\  A. x  e.  ( Base `  R ) ( ( e ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) e )  =  x ) ) )
5 rngurd.z . . . 4  |-  ( ph  ->  .1.  e.  B )
6 rngurd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  R ) )
75, 6eleqtrd 2703 . . 3  |-  ( ph  ->  .1.  e.  ( Base `  R ) )
8 rngurd.i . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
9 rngurd.j . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
108, 9jca 554 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .1.  .x.  x
)  =  x  /\  ( x  .x.  .1.  )  =  x ) )
1110ralrimiva 2966 . . . 4  |-  ( ph  ->  A. x  e.  B  ( (  .1.  .x.  x )  =  x  /\  ( x  .x.  .1.  )  =  x
) )
12 rngurd.p . . . . . . . . 9  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
1312adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  .x.  =  ( .r `  R ) )
1413oveqd 6667 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  (  .1.  ( .r
`  R ) x ) )
1514eqeq1d 2624 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
(  .1.  .x.  x
)  =  x  <->  (  .1.  ( .r `  R ) x )  =  x ) )
1613oveqd 6667 . . . . . . 7  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  ( x ( .r `  R )  .1.  ) )
1716eqeq1d 2624 . . . . . 6  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  .x.  .1.  )  =  x  <->  ( x
( .r `  R
)  .1.  )  =  x ) )
1815, 17anbi12d 747 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  (
( (  .1.  .x.  x )  =  x  /\  ( x  .x.  .1.  )  =  x
)  <->  ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) ) )
196, 18raleqbidva 3154 . . . 4  |-  ( ph  ->  ( A. x  e.  B  ( (  .1. 
.x.  x )  =  x  /\  ( x 
.x.  .1.  )  =  x )  <->  A. x  e.  ( Base `  R
) ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) ) )
2011, 19mpbid 222 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  R )
( (  .1.  ( .r `  R ) x )  =  x  /\  ( x ( .r
`  R )  .1.  )  =  x ) )
216eleq2d 2687 . . . . . . . 8  |-  ( ph  ->  ( e  e.  B  <->  e  e.  ( Base `  R
) ) )
2213oveqd 6667 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  (
e  .x.  x )  =  ( e ( .r `  R ) x ) )
2322eqeq1d 2624 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( e  .x.  x
)  =  x  <->  ( e
( .r `  R
) x )  =  x ) )
2413oveqd 6667 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  e )  =  ( x ( .r `  R ) e ) )
2524eqeq1d 2624 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B )  ->  (
( x  .x.  e
)  =  x  <->  ( x
( .r `  R
) e )  =  x ) )
2623, 25anbi12d 747 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) )
276, 26raleqbidva 3154 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  B  ( ( e 
.x.  x )  =  x  /\  ( x 
.x.  e )  =  x )  <->  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) )
2821, 27anbi12d 747 . . . . . . 7  |-  ( ph  ->  ( ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) )  <->  ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) ) )
298ralrimiva 2966 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  B  (  .1.  .x.  x )  =  x )
3029adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  A. x  e.  B  (  .1.  .x.  x )  =  x )
31 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  B )  ->  e  e.  B )
32 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  B )  /\  x  =  e )  ->  x  =  e )
3332oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  B )  /\  x  =  e )  -> 
(  .1.  .x.  x
)  =  (  .1. 
.x.  e ) )
3433, 32eqeq12d 2637 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  e  e.  B )  /\  x  =  e )  -> 
( (  .1.  .x.  x )  =  x  <-> 
(  .1.  .x.  e
)  =  e ) )
3531, 34rspcdv 3312 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  B )  ->  ( A. x  e.  B  (  .1.  .x.  x )  =  x  ->  (  .1. 
.x.  e )  =  e ) )
3630, 35mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  e  e.  B )  ->  (  .1.  .x.  e )  =  e )
3736adantrr 753 . . . . . . . . 9  |-  ( (
ph  /\  ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  ->  (  .1.  .x.  e )  =  e )
385adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  ->  .1.  e.  B
)
39 simprr 796 . . . . . . . . . 10  |-  ( (
ph  /\  ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  ->  A. x  e.  B  ( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x ) )
40 oveq2 6658 . . . . . . . . . . . . . 14  |-  ( x  =  .1.  ->  (
e  .x.  x )  =  ( e  .x.  .1.  ) )
41 id 22 . . . . . . . . . . . . . 14  |-  ( x  =  .1.  ->  x  =  .1.  )
4240, 41eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( x  =  .1.  ->  (
( e  .x.  x
)  =  x  <->  ( e  .x.  .1.  )  =  .1.  ) )
43 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( x  =  .1.  ->  (
x  .x.  e )  =  (  .1.  .x.  e
) )
4443, 41eqeq12d 2637 . . . . . . . . . . . . 13  |-  ( x  =  .1.  ->  (
( x  .x.  e
)  =  x  <->  (  .1.  .x.  e )  =  .1.  ) )
4542, 44anbi12d 747 . . . . . . . . . . . 12  |-  ( x  =  .1.  ->  (
( ( e  .x.  x )  =  x  /\  ( x  .x.  e )  =  x )  <->  ( ( e 
.x.  .1.  )  =  .1.  /\  (  .1.  .x.  e )  =  .1.  ) ) )
4645rspcva 3307 . . . . . . . . . . 11  |-  ( (  .1.  e.  B  /\  A. x  e.  B  ( ( e  .x.  x
)  =  x  /\  ( x  .x.  e )  =  x ) )  ->  ( ( e 
.x.  .1.  )  =  .1.  /\  (  .1.  .x.  e )  =  .1.  ) )
4746simprd 479 . . . . . . . . . 10  |-  ( (  .1.  e.  B  /\  A. x  e.  B  ( ( e  .x.  x
)  =  x  /\  ( x  .x.  e )  =  x ) )  ->  (  .1.  .x.  e )  =  .1.  )
4838, 39, 47syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  ->  (  .1.  .x.  e )  =  .1.  )
4937, 48eqtr3d 2658 . . . . . . . 8  |-  ( (
ph  /\  ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) ) )  ->  e  =  .1.  )
5049ex 450 . . . . . . 7  |-  ( ph  ->  ( ( e  e.  B  /\  A. x  e.  B  ( (
e  .x.  x )  =  x  /\  (
x  .x.  e )  =  x ) )  -> 
e  =  .1.  )
)
5128, 50sylbird 250 . . . . . 6  |-  ( ph  ->  ( ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) )  -> 
e  =  .1.  )
)
5251alrimiv 1855 . . . . 5  |-  ( ph  ->  A. e ( ( e  e.  ( Base `  R )  /\  A. x  e.  ( Base `  R ) ( ( e ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) e )  =  x ) )  ->  e  =  .1.  ) )
53 eleq1 2689 . . . . . . 7  |-  ( e  =  .1.  ->  (
e  e.  ( Base `  R )  <->  .1.  e.  ( Base `  R )
) )
54 oveq1 6657 . . . . . . . . . 10  |-  ( e  =  .1.  ->  (
e ( .r `  R ) x )  =  (  .1.  ( .r `  R ) x ) )
5554eqeq1d 2624 . . . . . . . . 9  |-  ( e  =  .1.  ->  (
( e ( .r
`  R ) x )  =  x  <->  (  .1.  ( .r `  R ) x )  =  x ) )
56 oveq2 6658 . . . . . . . . . 10  |-  ( e  =  .1.  ->  (
x ( .r `  R ) e )  =  ( x ( .r `  R )  .1.  ) )
5756eqeq1d 2624 . . . . . . . . 9  |-  ( e  =  .1.  ->  (
( x ( .r
`  R ) e )  =  x  <->  ( x
( .r `  R
)  .1.  )  =  x ) )
5855, 57anbi12d 747 . . . . . . . 8  |-  ( e  =  .1.  ->  (
( ( e ( .r `  R ) x )  =  x  /\  ( x ( .r `  R ) e )  =  x )  <->  ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) ) )
5958ralbidv 2986 . . . . . . 7  |-  ( e  =  .1.  ->  ( A. x  e.  ( Base `  R ) ( ( e ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R ) e )  =  x )  <->  A. x  e.  ( Base `  R ) ( (  .1.  ( .r
`  R ) x )  =  x  /\  ( x ( .r
`  R )  .1.  )  =  x ) ) )
6053, 59anbi12d 747 . . . . . 6  |-  ( e  =  .1.  ->  (
( e  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( e ( .r `  R ) x )  =  x  /\  ( x ( .r `  R ) e )  =  x ) )  <->  (  .1.  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) ) ) )
6160eqeu 3377 . . . . 5  |-  ( (  .1.  e.  ( Base `  R )  /\  (  .1.  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) )  /\  A. e ( ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) )  -> 
e  =  .1.  )
)  ->  E! e
( e  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( e ( .r `  R ) x )  =  x  /\  ( x ( .r `  R ) e )  =  x ) ) )
627, 7, 20, 52, 61syl121anc 1331 . . . 4  |-  ( ph  ->  E! e ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) )
6360iota2 5877 . . . 4  |-  ( (  .1.  e.  B  /\  E! e ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) )  ->  ( (  .1. 
e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( (  .1.  ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
)  .1.  )  =  x ) )  <->  ( iota e ( e  e.  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( ( e ( .r `  R
) x )  =  x  /\  ( x ( .r `  R
) e )  =  x ) ) )  =  .1.  ) )
645, 62, 63syl2anc 693 . . 3  |-  ( ph  ->  ( (  .1.  e.  ( Base `  R )  /\  A. x  e.  (
Base `  R )
( (  .1.  ( .r `  R ) x )  =  x  /\  ( x ( .r
`  R )  .1.  )  =  x ) )  <->  ( iota e
( e  e.  (
Base `  R )  /\  A. x  e.  (
Base `  R )
( ( e ( .r `  R ) x )  =  x  /\  ( x ( .r `  R ) e )  =  x ) ) )  =  .1.  ) )
657, 20, 64mpbi2and 956 . 2  |-  ( ph  ->  ( iota e ( e  e.  ( Base `  R )  /\  A. x  e.  ( Base `  R ) ( ( e ( .r `  R ) x )  =  x  /\  (
x ( .r `  R ) e )  =  x ) ) )  =  .1.  )
664, 65syl5req 2669 1  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E!weu 2470   A.wral 2912   iotacio 5849   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   1rcur 18501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgp 18490  df-ur 18502
This theorem is referenced by:  ress1r  29789
  Copyright terms: Public domain W3C validator