| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwunsn | Structured version Visualization version Unicode version | ||
| Description: Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.) |
| Ref | Expression |
|---|---|
| elpwunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3584 |
. 2
| |
| 2 | elpwg 4166 |
. . . . . . 7
| |
| 3 | dfss3 3592 |
. . . . . . 7
| |
| 4 | 2, 3 | syl6bb 276 |
. . . . . 6
|
| 5 | 4 | notbid 308 |
. . . . 5
|
| 6 | 5 | biimpa 501 |
. . . 4
|
| 7 | rexnal 2995 |
. . . 4
| |
| 8 | 6, 7 | sylibr 224 |
. . 3
|
| 9 | elpwi 4168 |
. . . . . . . . . 10
| |
| 10 | ssel 3597 |
. . . . . . . . . 10
| |
| 11 | elun 3753 |
. . . . . . . . . . . . 13
| |
| 12 | elsni 4194 |
. . . . . . . . . . . . . . 15
| |
| 13 | 12 | orim2i 540 |
. . . . . . . . . . . . . 14
|
| 14 | 13 | ord 392 |
. . . . . . . . . . . . 13
|
| 15 | 11, 14 | sylbi 207 |
. . . . . . . . . . . 12
|
| 16 | 15 | imim2i 16 |
. . . . . . . . . . 11
|
| 17 | 16 | impd 447 |
. . . . . . . . . 10
|
| 18 | 9, 10, 17 | 3syl 18 |
. . . . . . . . 9
|
| 19 | eleq1 2689 |
. . . . . . . . . 10
| |
| 20 | 19 | biimpd 219 |
. . . . . . . . 9
|
| 21 | 18, 20 | syl6 35 |
. . . . . . . 8
|
| 22 | 21 | expd 452 |
. . . . . . 7
|
| 23 | 22 | com4r 94 |
. . . . . 6
|
| 24 | 23 | pm2.43b 55 |
. . . . 5
|
| 25 | 24 | rexlimdv 3030 |
. . . 4
|
| 26 | 25 | imp 445 |
. . 3
|
| 27 | 8, 26 | syldan 487 |
. 2
|
| 28 | 1, 27 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pw 4160 df-sn 4178 |
| This theorem is referenced by: pwfilem 8260 incexclem 14568 ramub1lem1 15730 ptcmplem5 21860 onsucsuccmpi 32442 |
| Copyright terms: Public domain | W3C validator |