| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrdav | Structured version Visualization version Unicode version | ||
| Description: Deduce equality of classes from an equivalence of membership that depends on the membership variable. (Contributed by NM, 7-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
| Ref | Expression |
|---|---|
| eqrdav.1 |
|
| eqrdav.2 |
|
| eqrdav.3 |
|
| Ref | Expression |
|---|---|
| eqrdav |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrdav.1 |
. . . 4
| |
| 2 | eqrdav.3 |
. . . . . 6
| |
| 3 | 2 | biimpd 219 |
. . . . 5
|
| 4 | 3 | impancom 456 |
. . . 4
|
| 5 | 1, 4 | mpd 15 |
. . 3
|
| 6 | eqrdav.2 |
. . . 4
| |
| 7 | 2 | biimprd 238 |
. . . . 5
|
| 8 | 7 | impancom 456 |
. . . 4
|
| 9 | 6, 8 | mpd 15 |
. . 3
|
| 10 | 5, 9 | impbida 877 |
. 2
|
| 11 | 10 | eqrdv 2620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 |
| This theorem is referenced by: boxcutc 7951 supminf 11775 f1omvdconj 17866 fmucndlem 22095 ballotlemsima 30577 supminfxr 39694 |
| Copyright terms: Public domain | W3C validator |