Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsima Structured version   Visualization version   Unicode version

Theorem ballotlemsima 30577
Description: The image by  S of an interval before the first pick. (Contributed by Thierry Arnoux, 5-May-2017.)
Hypotheses
Ref Expression
ballotth.m  |-  M  e.  NN
ballotth.n  |-  N  e.  NN
ballotth.o  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
ballotth.p  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
ballotth.f  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
ballotth.e  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
ballotth.mgtn  |-  N  < 
M
ballotth.i  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
ballotth.s  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
Assertion
Ref Expression
ballotlemsima  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Distinct variable groups:    M, c    N, c    O, c    i, M   
i, N    i, O    k, M    k, N    k, O    i, c, F, k    C, i, k    i, E, k    C, k    k, I, c    E, c    i, I, c    k, J    S, k
Allowed substitution hints:    C( x, c)    P( x, i, k, c)    S( x, i, c)    E( x)    F( x)    I( x)    J( x, i, c)    M( x)    N( x)    O( x)

Proof of Theorem ballotlemsima
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . . . . . 6  |-  ( ( S `  C )
" ( 1 ... J ) )  C_  ran  ( S `  C
)
2 ballotth.m . . . . . . . . 9  |-  M  e.  NN
3 ballotth.n . . . . . . . . 9  |-  N  e.  NN
4 ballotth.o . . . . . . . . 9  |-  O  =  { c  e.  ~P ( 1 ... ( M  +  N )
)  |  ( # `  c )  =  M }
5 ballotth.p . . . . . . . . 9  |-  P  =  ( x  e.  ~P O  |->  ( ( # `  x )  /  ( # `
 O ) ) )
6 ballotth.f . . . . . . . . 9  |-  F  =  ( c  e.  O  |->  ( i  e.  ZZ  |->  ( ( # `  (
( 1 ... i
)  i^i  c )
)  -  ( # `  ( ( 1 ... i )  \  c
) ) ) ) )
7 ballotth.e . . . . . . . . 9  |-  E  =  { c  e.  O  |  A. i  e.  ( 1 ... ( M  +  N ) ) 0  <  ( ( F `  c ) `
 i ) }
8 ballotth.mgtn . . . . . . . . 9  |-  N  < 
M
9 ballotth.i . . . . . . . . 9  |-  I  =  ( c  e.  ( O  \  E ) 
|-> inf ( { k  e.  ( 1 ... ( M  +  N )
)  |  ( ( F `  c ) `
 k )  =  0 } ,  RR ,  <  ) )
10 ballotth.s . . . . . . . . 9  |-  S  =  ( c  e.  ( O  \  E ) 
|->  ( i  e.  ( 1 ... ( M  +  N ) ) 
|->  if ( i  <_ 
( I `  c
) ,  ( ( ( I `  c
)  +  1 )  -  i ) ,  i ) ) )
112, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsf1o 30575 . . . . . . . 8  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) : ( 1 ... ( M  +  N ) ) -1-1-onto-> ( 1 ... ( M  +  N ) )  /\  `' ( S `  C )  =  ( S `  C ) ) )
1211simpld 475 . . . . . . 7  |-  ( C  e.  ( O  \  E )  ->  ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
) )
13 f1of 6137 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C ) : ( 1 ... ( M  +  N ) ) --> ( 1 ... ( M  +  N )
) )
14 frn 6053 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) --> ( 1 ... ( M  +  N ) )  ->  ran  ( S `  C
)  C_  ( 1 ... ( M  +  N ) ) )
1512, 13, 143syl 18 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ran  ( S `  C ) 
C_  ( 1 ... ( M  +  N
) ) )
161, 15syl5ss 3614 . . . . 5  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ( 1 ... ( M  +  N
) ) )
17 fzssuz 12382 . . . . . 6  |-  ( 1 ... ( M  +  N ) )  C_  ( ZZ>= `  1 )
18 uzssz 11707 . . . . . 6  |-  ( ZZ>= ` 
1 )  C_  ZZ
1917, 18sstri 3612 . . . . 5  |-  ( 1 ... ( M  +  N ) )  C_  ZZ
2016, 19syl6ss 3615 . . . 4  |-  ( C  e.  ( O  \  E )  ->  (
( S `  C
) " ( 1 ... J ) ) 
C_  ZZ )
2120adantr 481 . . 3  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  C_  ZZ )
2221sselda 3603 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( S `  C ) " (
1 ... J ) ) )  ->  k  e.  ZZ )
23 elfzelz 12342 . . 3  |-  ( k  e.  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  ->  k  e.  ZZ )
2423adantl 482 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) )  ->  k  e.  ZZ )
25 f1ofn 6138 . . . . . . 7  |-  ( ( S `  C ) : ( 1 ... ( M  +  N
) ) -1-1-onto-> ( 1 ... ( M  +  N )
)  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
2612, 25syl 17 . . . . . 6  |-  ( C  e.  ( O  \  E )  ->  ( S `  C )  Fn  ( 1 ... ( M  +  N )
) )
2726adantr 481 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( S `  C )  Fn  (
1 ... ( M  +  N ) ) )
282, 3, 4, 5, 6, 7, 8, 9ballotlemiex 30563 . . . . . . . . . 10  |-  ( C  e.  ( O  \  E )  ->  (
( I `  C
)  e.  ( 1 ... ( M  +  N ) )  /\  ( ( F `  C ) `  (
I `  C )
)  =  0 ) )
2928simpld 475 . . . . . . . . 9  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ( 1 ... ( M  +  N )
) )
3029adantr 481 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ( 1 ... ( M  +  N ) ) )
31 elfzuz3 12339 . . . . . . . 8  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  ( M  +  N )  e.  ( ZZ>= `  ( I `  C ) ) )
3230, 31syl 17 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  ( I `  C ) ) )
33 elfzuz3 12339 . . . . . . . 8  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  (
I `  C )  e.  ( ZZ>= `  J )
)
3433adantl 482 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  (
ZZ>= `  J ) )
35 uztrn 11704 . . . . . . 7  |-  ( ( ( M  +  N
)  e.  ( ZZ>= `  ( I `  C
) )  /\  (
I `  C )  e.  ( ZZ>= `  J )
)  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
3632, 34, 35syl2anc 693 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  (
ZZ>= `  J ) )
37 fzss2 12381 . . . . . 6  |-  ( ( M  +  N )  e.  ( ZZ>= `  J
)  ->  ( 1 ... J )  C_  ( 1 ... ( M  +  N )
) )
3836, 37syl 17 . . . . 5  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( 1 ... J )  C_  (
1 ... ( M  +  N ) ) )
39 fvelimab 6253 . . . . 5  |-  ( ( ( S `  C
)  Fn  ( 1 ... ( M  +  N ) )  /\  ( 1 ... J
)  C_  ( 1 ... ( M  +  N ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4027, 38, 39syl2anc 693 . . . 4  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( S `  C ) " (
1 ... J ) )  <->  E. j  e.  (
1 ... J ) ( ( S `  C
) `  j )  =  k ) )
4140adantr 481 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
42 1zzd 11408 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  e.  ZZ )
432nnzi 11401 . . . . . . . . . . . . 13  |-  M  e.  ZZ
443nnzi 11401 . . . . . . . . . . . . 13  |-  N  e.  ZZ
45 zaddcl 11417 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  N
)  e.  ZZ )
4643, 44, 45mp2an 708 . . . . . . . . . . . 12  |-  ( M  +  N )  e.  ZZ
4746a1i 11 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  ZZ )
48 elfzelz 12342 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  e.  ZZ )
4948adantl 482 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ZZ )
50 elfzle1 12344 . . . . . . . . . . . 12  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  1  <_  J )
5150adantl 482 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  1  <_  J
)
5249zred 11482 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  RR )
53 elfzelz 12342 . . . . . . . . . . . . . . 15  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  e.  ZZ )
5429, 53syl 17 . . . . . . . . . . . . . 14  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  e.  ZZ )
5554adantr 481 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  ZZ )
5655zred 11482 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  e.  RR )
5747zred 11482 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( M  +  N )  e.  RR )
58 elfzle2 12345 . . . . . . . . . . . . 13  |-  ( J  e.  ( 1 ... ( I `  C
) )  ->  J  <_  ( I `  C
) )
5958adantl 482 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  (
I `  C )
)
60 elfzle2 12345 . . . . . . . . . . . . . 14  |-  ( ( I `  C )  e.  ( 1 ... ( M  +  N
) )  ->  (
I `  C )  <_  ( M  +  N
) )
6129, 60syl 17 . . . . . . . . . . . . 13  |-  ( C  e.  ( O  \  E )  ->  (
I `  C )  <_  ( M  +  N
) )
6261adantr 481 . . . . . . . . . . . 12  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( I `  C )  <_  ( M  +  N )
)
6352, 56, 57, 59, 62letrd 10194 . . . . . . . . . . 11  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  <_  ( M  +  N )
)
64 elfz4 12335 . . . . . . . . . . 11  |-  ( ( ( 1  e.  ZZ  /\  ( M  +  N
)  e.  ZZ  /\  J  e.  ZZ )  /\  ( 1  <_  J  /\  J  <_  ( M  +  N ) ) )  ->  J  e.  ( 1 ... ( M  +  N )
) )
6542, 47, 49, 51, 63, 64syl32anc 1334 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( M  +  N ) ) )
662, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 30571 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
6765, 66syldan 487 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  if ( J  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J
) )
68 simpr 477 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  J  e.  ( 1 ... ( I `
 C ) ) )
69 iftrue 4092 . . . . . . . . . 10  |-  ( J  <_  ( I `  C )  ->  if ( J  <_  ( I `
 C ) ,  ( ( ( I `
 C )  +  1 )  -  J
) ,  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7068, 58, 693syl 18 . . . . . . . . 9  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  if ( J  <_  ( I `  C ) ,  ( ( ( I `  C )  +  1 )  -  J ) ,  J )  =  ( ( ( I `
 C )  +  1 )  -  J
) )
7167, 70eqtrd 2656 . . . . . . . 8  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) `  J )  =  ( ( ( I `  C )  +  1 )  -  J ) )
7271oveq1d 6665 . . . . . . 7  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( ( S `  C ) `
 J ) ... ( I `  C
) )  =  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) )
7372eleq2d 2687 . . . . . 6  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
)  <->  k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( I `  C ) ) ) )
7473adantr 481 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
7554ad2antrr 762 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  ZZ )
7675zcnd 11483 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
I `  C )  e.  CC )
77 1cnd 10056 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  CC )
7876, 77pncand 10393 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( I `  C )  +  1 )  -  1 )  =  ( I `  C ) )
7978oveq2d 6666 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  =  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) )
8079eleq2d 2687 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... (
I `  C )
) ) )
81 1zzd 11408 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  1  e.  ZZ )
8248ad2antlr 763 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  J  e.  ZZ )
8375peano2zd 11485 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( I `  C
)  +  1 )  e.  ZZ )
84 simpr 477 . . . . . 6  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
85 fzrev 12403 . . . . . 6  |-  ( ( ( 1  e.  ZZ  /\  J  e.  ZZ )  /\  ( ( ( I `  C )  +  1 )  e.  ZZ  /\  k  e.  ZZ ) )  -> 
( k  e.  ( ( ( ( I `
 C )  +  1 )  -  J
) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8681, 82, 83, 84, 85syl22anc 1327 . . . . 5  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( ( I `  C )  +  1 )  -  J ) ... ( ( ( I `  C )  +  1 )  - 
1 ) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
8774, 80, 863bitr2d 296 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  ( (
( I `  C
)  +  1 )  -  k )  e.  ( 1 ... J
) ) )
88 risset 3062 . . . . 5  |-  ( ( ( ( I `  C )  +  1 )  -  k )  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) )
8988a1i 11 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  e.  ( 1 ... J )  <->  E. j  e.  ( 1 ... J
) j  =  ( ( ( I `  C )  +  1 )  -  k ) ) )
90 eqcom 2629 . . . . . . 7  |-  ( ( ( ( I `  C )  +  1 )  -  k )  =  j  <->  j  =  ( ( ( I `
 C )  +  1 )  -  k
) )
9154ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9291adantlr 751 . . . . . . . . . 10  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  ZZ )
9392zcnd 11483 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  CC )
94 1cnd 10056 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  1  e.  CC )
9593, 94addcld 10059 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( I `  C
)  +  1 )  e.  CC )
96 simplr 792 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  ZZ )
9796zcnd 11483 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  k  e.  CC )
98 elfzelz 12342 . . . . . . . . . 10  |-  ( j  e.  ( 1 ... J )  ->  j  e.  ZZ )
9998adantl 482 . . . . . . . . 9  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
10099zcnd 11483 . . . . . . . 8  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  CC )
101 subsub23 10286 . . . . . . . 8  |-  ( ( ( ( I `  C )  +  1 )  e.  CC  /\  k  e.  CC  /\  j  e.  CC )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10295, 97, 100, 101syl3anc 1326 . . . . . . 7  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( ( I `
 C )  +  1 )  -  k
)  =  j  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
10390, 102syl5bbr 274 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
104 simpll 790 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  C  e.  ( O  \  E
) )
10538sselda 3603 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ( 1 ... ( M  +  N )
) )
1062, 3, 4, 5, 6, 7, 8, 9, 10ballotlemsv 30571 . . . . . . . . . 10  |-  ( ( C  e.  ( O 
\  E )  /\  j  e.  ( 1 ... ( M  +  N ) ) )  ->  ( ( S `
 C ) `  j )  =  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j ) )
107104, 105, 106syl2anc 693 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  if ( j  <_ 
( I `  C
) ,  ( ( ( I `  C
)  +  1 )  -  j ) ,  j ) )
10898adantl 482 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  ZZ )
109108zred 11482 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  e.  RR )
11048ad2antlr 763 . . . . . . . . . . . 12  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  ZZ )
111110zred 11482 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  e.  RR )
11291zred 11482 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
I `  C )  e.  RR )
113 elfzle2 12345 . . . . . . . . . . . 12  |-  ( j  e.  ( 1 ... J )  ->  j  <_  J )
114113adantl 482 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  J )
11558ad2antlr 763 . . . . . . . . . . 11  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  J  <_  ( I `  C
) )
116109, 111, 112, 114, 115letrd 10194 . . . . . . . . . 10  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  j  <_  ( I `  C
) )
117 iftrue 4092 . . . . . . . . . 10  |-  ( j  <_  ( I `  C )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
118116, 117syl 17 . . . . . . . . 9  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  if ( j  <_  (
I `  C ) ,  ( ( ( I `  C )  +  1 )  -  j ) ,  j )  =  ( ( ( I `  C
)  +  1 )  -  j ) )
119107, 118eqtrd 2656 . . . . . . . 8  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( S `  C
) `  j )  =  ( ( ( I `  C )  +  1 )  -  j ) )
120119eqeq1d 2624 . . . . . . 7  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
121120adantlr 751 . . . . . 6  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
( ( S `  C ) `  j
)  =  k  <->  ( (
( I `  C
)  +  1 )  -  j )  =  k ) )
122103, 121bitr4d 271 . . . . 5  |-  ( ( ( ( C  e.  ( O  \  E
)  /\  J  e.  ( 1 ... (
I `  C )
) )  /\  k  e.  ZZ )  /\  j  e.  ( 1 ... J
) )  ->  (
j  =  ( ( ( I `  C
)  +  1 )  -  k )  <->  ( ( S `  C ) `  j )  =  k ) )
123122rexbidva 3049 . . . 4  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  ( E. j  e.  (
1 ... J ) j  =  ( ( ( I `  C )  +  1 )  -  k )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12487, 89, 1233bitrd 294 . . 3  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( ( S `  C
) `  J ) ... ( I `  C
) )  <->  E. j  e.  ( 1 ... J
) ( ( S `
 C ) `  j )  =  k ) )
12541, 124bitr4d 271 . 2  |-  ( ( ( C  e.  ( O  \  E )  /\  J  e.  ( 1 ... ( I `
 C ) ) )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( S `  C )
" ( 1 ... J ) )  <->  k  e.  ( ( ( S `
 C ) `  J ) ... (
I `  C )
) ) )
12622, 24, 125eqrdav 2621 1  |-  ( ( C  e.  ( O 
\  E )  /\  J  e.  ( 1 ... ( I `  C ) ) )  ->  ( ( S `
 C ) "
( 1 ... J
) )  =  ( ( ( S `  C ) `  J
) ... ( I `  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650  infcinf 8347   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-hash 13118
This theorem is referenced by:  ballotlemfrc  30588
  Copyright terms: Public domain W3C validator