MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmucndlem Structured version   Visualization version   Unicode version

Theorem fmucndlem 22095
Description: Lemma for fmucnd 22096. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Assertion
Ref Expression
fmucndlem  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " ( A  X.  A ) )  =  ( ( F
" A )  X.  ( F " A
) ) )
Distinct variable groups:    x, y, A    x, F, y    x, X, y

Proof of Theorem fmucndlem
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 df-ima 5127 . . 3  |-  ( ( x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
) " ( A  X.  A ) )  =  ran  ( ( x  e.  X , 
y  e.  X  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)  |`  ( A  X.  A ) )
2 simpr 477 . . . . 5  |-  ( ( F  Fn  X  /\  A  C_  X )  ->  A  C_  X )
3 resmpt2 6758 . . . . 5  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. )  |`  ( A  X.  A ) )  =  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. ) )
42, 3sylancom 701 . . . 4  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. )  |`  ( A  X.  A ) )  =  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. ) )
54rneqd 5353 . . 3  |-  ( ( F  Fn  X  /\  A  C_  X )  ->  ran  ( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. )  |`  ( A  X.  A ) )  =  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y ) >. )
)
61, 5syl5eq 2668 . 2  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " ( A  X.  A ) )  =  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y ) >. )
)
7 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
8 vex 3203 . . . . . . . . . . . . 13  |-  y  e. 
_V
97, 8op1std 7178 . . . . . . . . . . . 12  |-  ( p  =  <. x ,  y
>.  ->  ( 1st `  p
)  =  x )
109fveq2d 6195 . . . . . . . . . . 11  |-  ( p  =  <. x ,  y
>.  ->  ( F `  ( 1st `  p ) )  =  ( F `
 x ) )
117, 8op2ndd 7179 . . . . . . . . . . . 12  |-  ( p  =  <. x ,  y
>.  ->  ( 2nd `  p
)  =  y )
1211fveq2d 6195 . . . . . . . . . . 11  |-  ( p  =  <. x ,  y
>.  ->  ( F `  ( 2nd `  p ) )  =  ( F `
 y ) )
1310, 12opeq12d 4410 . . . . . . . . . 10  |-  ( p  =  <. x ,  y
>.  ->  <. ( F `  ( 1st `  p ) ) ,  ( F `
 ( 2nd `  p
) ) >.  =  <. ( F `  x ) ,  ( F `  y ) >. )
1413mpt2mpt 6752 . . . . . . . . 9  |-  ( p  e.  ( A  X.  A )  |->  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>. )  =  (
x  e.  A , 
y  e.  A  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)
1514eqcomi 2631 . . . . . . . 8  |-  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y ) >. )  =  ( p  e.  ( A  X.  A
)  |->  <. ( F `  ( 1st `  p ) ) ,  ( F `
 ( 2nd `  p
) ) >. )
1615rneqi 5352 . . . . . . 7  |-  ran  (
x  e.  A , 
y  e.  A  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)  =  ran  (
p  e.  ( A  X.  A )  |->  <.
( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) ) >. )
17 fvexd 6203 . . . . . . 7  |-  ( ( T.  /\  p  e.  ( A  X.  A
) )  ->  ( F `  ( 1st `  p ) )  e. 
_V )
18 fvexd 6203 . . . . . . 7  |-  ( ( T.  /\  p  e.  ( A  X.  A
) )  ->  ( F `  ( 2nd `  p ) )  e. 
_V )
1916, 17, 18fliftrel 6558 . . . . . 6  |-  ( T. 
->  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. )  C_  ( _V 
X.  _V ) )
2019trud 1493 . . . . 5  |-  ran  (
x  e.  A , 
y  e.  A  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)  C_  ( _V  X.  _V )
2120sseli 3599 . . . 4  |-  ( p  e.  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y ) >. )  ->  p  e.  ( _V 
X.  _V ) )
2221adantl 482 . . 3  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
) )  ->  p  e.  ( _V  X.  _V ) )
23 xpss 5226 . . . . 5  |-  ( ( F " A )  X.  ( F " A ) )  C_  ( _V  X.  _V )
2423sseli 3599 . . . 4  |-  ( p  e.  ( ( F
" A )  X.  ( F " A
) )  ->  p  e.  ( _V  X.  _V ) )
2524adantl 482 . . 3  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( ( F " A
)  X.  ( F
" A ) ) )  ->  p  e.  ( _V  X.  _V )
)
26 fvelimab 6253 . . . . . . . 8  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( 1st `  p
)  e.  ( F
" A )  <->  E. x  e.  A  ( F `  x )  =  ( 1st `  p ) ) )
27 fvelimab 6253 . . . . . . . 8  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( 2nd `  p
)  e.  ( F
" A )  <->  E. y  e.  A  ( F `  y )  =  ( 2nd `  p ) ) )
2826, 27anbi12d 747 . . . . . . 7  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( ( 1st `  p )  e.  ( F " A )  /\  ( 2nd `  p
)  e.  ( F
" A ) )  <-> 
( E. x  e.  A  ( F `  x )  =  ( 1st `  p )  /\  E. y  e.  A  ( F `  y )  =  ( 2nd `  p ) ) ) )
29 eqid 2622 . . . . . . . . 9  |-  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y ) >. )  =  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. )
30 opex 4932 . . . . . . . . 9  |-  <. ( F `  x ) ,  ( F `  y ) >.  e.  _V
3129, 30elrnmpt2 6773 . . . . . . . 8  |-  ( <.
( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)  <->  E. x  e.  A  E. y  e.  A  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  =  <. ( F `  x ) ,  ( F `  y ) >. )
32 eqcom 2629 . . . . . . . . . 10  |-  ( <.
( 1st `  p
) ,  ( 2nd `  p ) >.  =  <. ( F `  x ) ,  ( F `  y ) >.  <->  <. ( F `
 x ) ,  ( F `  y
) >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
33 fvex 6201 . . . . . . . . . . 11  |-  ( 1st `  p )  e.  _V
34 fvex 6201 . . . . . . . . . . 11  |-  ( 2nd `  p )  e.  _V
3533, 34opth2 4949 . . . . . . . . . 10  |-  ( <.
( F `  x
) ,  ( F `
 y ) >.  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  <->  ( ( F `  x )  =  ( 1st `  p
)  /\  ( F `  y )  =  ( 2nd `  p ) ) )
3632, 35bitri 264 . . . . . . . . 9  |-  ( <.
( 1st `  p
) ,  ( 2nd `  p ) >.  =  <. ( F `  x ) ,  ( F `  y ) >.  <->  ( ( F `  x )  =  ( 1st `  p
)  /\  ( F `  y )  =  ( 2nd `  p ) ) )
37362rexbii 3042 . . . . . . . 8  |-  ( E. x  e.  A  E. y  e.  A  <. ( 1st `  p ) ,  ( 2nd `  p
) >.  =  <. ( F `  x ) ,  ( F `  y ) >.  <->  E. x  e.  A  E. y  e.  A  ( ( F `  x )  =  ( 1st `  p
)  /\  ( F `  y )  =  ( 2nd `  p ) ) )
38 reeanv 3107 . . . . . . . 8  |-  ( E. x  e.  A  E. y  e.  A  (
( F `  x
)  =  ( 1st `  p )  /\  ( F `  y )  =  ( 2nd `  p
) )  <->  ( E. x  e.  A  ( F `  x )  =  ( 1st `  p
)  /\  E. y  e.  A  ( F `  y )  =  ( 2nd `  p ) ) )
3931, 37, 383bitri 286 . . . . . . 7  |-  ( <.
( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)  <->  ( E. x  e.  A  ( F `  x )  =  ( 1st `  p )  /\  E. y  e.  A  ( F `  y )  =  ( 2nd `  p ) ) )
4028, 39syl6rbbr 279 . . . . . 6  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)  <->  ( ( 1st `  p )  e.  ( F " A )  /\  ( 2nd `  p
)  e.  ( F
" A ) ) ) )
41 opelxp 5146 . . . . . 6  |-  ( <.
( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ( ( F " A
)  X.  ( F
" A ) )  <-> 
( ( 1st `  p
)  e.  ( F
" A )  /\  ( 2nd `  p )  e.  ( F " A ) ) )
4240, 41syl6bbr 278 . . . . 5  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)  <->  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ( ( F " A
)  X.  ( F
" A ) ) ) )
4342adantr 481 . . . 4  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( _V  X.  _V )
)  ->  ( <. ( 1st `  p ) ,  ( 2nd `  p
) >.  e.  ran  (
x  e.  A , 
y  e.  A  |->  <.
( F `  x
) ,  ( F `
 y ) >.
)  <->  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ( ( F " A
)  X.  ( F
" A ) ) ) )
44 1st2nd2 7205 . . . . . 6  |-  ( p  e.  ( _V  X.  _V )  ->  p  = 
<. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4544adantl 482 . . . . 5  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( _V  X.  _V )
)  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4645eleq1d 2686 . . . 4  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( _V  X.  _V )
)  ->  ( p  e.  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. )  <->  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
) ) )
4745eleq1d 2686 . . . 4  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( _V  X.  _V )
)  ->  ( p  e.  ( ( F " A )  X.  ( F " A ) )  <->  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  e.  ( ( F " A
)  X.  ( F
" A ) ) ) )
4843, 46, 473bitr4d 300 . . 3  |-  ( ( ( F  Fn  X  /\  A  C_  X )  /\  p  e.  ( _V  X.  _V )
)  ->  ( p  e.  ran  ( x  e.  A ,  y  e.  A  |->  <. ( F `  x ) ,  ( F `  y )
>. )  <->  p  e.  (
( F " A
)  X.  ( F
" A ) ) ) )
4922, 25, 48eqrdav 2621 . 2  |-  ( ( F  Fn  X  /\  A  C_  X )  ->  ran  ( x  e.  A ,  y  e.  A  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)  =  ( ( F " A )  X.  ( F " A ) ) )
506, 49eqtrd 2656 1  |-  ( ( F  Fn  X  /\  A  C_  X )  -> 
( ( x  e.  X ,  y  e.  X  |->  <. ( F `  x ) ,  ( F `  y )
>. ) " ( A  X.  A ) )  =  ( ( F
" A )  X.  ( F " A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   E.wrex 2913   _Vcvv 3200    C_ wss 3574   <.cop 4183    |-> cmpt 4729    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   ` cfv 5888    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fmucnd  22096
  Copyright terms: Public domain W3C validator