| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqri | Structured version Visualization version Unicode version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 7-Oct-2017.) |
| Ref | Expression |
|---|---|
| eqri.1 |
|
| eqri.2 |
|
| eqri.3 |
|
| Ref | Expression |
|---|---|
| eqri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1730 |
. . 3
| |
| 2 | eqri.1 |
. . 3
| |
| 3 | eqri.2 |
. . 3
| |
| 4 | eqri.3 |
. . . 4
| |
| 5 | 4 | a1i 11 |
. . 3
|
| 6 | 1, 2, 3, 5 | eqrd 3622 |
. 2
|
| 7 | 6 | trud 1493 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 |
| This theorem is referenced by: difrab2 29339 esum2dlem 30154 eulerpartlemn 30443 |
| Copyright terms: Public domain | W3C validator |