Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difrab2 Structured version   Visualization version   Unicode version

Theorem difrab2 29339
Description: Difference of two restricted class abstractions. Compare with difrab 3901. (Contributed by Thierry Arnoux, 3-Jan-2022.)
Assertion
Ref Expression
difrab2  |-  ( { x  e.  A  |  ph }  \  { x  e.  B  |  ph }
)  =  { x  e.  ( A  \  B
)  |  ph }

Proof of Theorem difrab2
StepHypRef Expression
1 nfrab1 3122 . . 3  |-  F/_ x { x  e.  A  |  ph }
2 nfrab1 3122 . . 3  |-  F/_ x { x  e.  B  |  ph }
31, 2nfdif 3731 . 2  |-  F/_ x
( { x  e.  A  |  ph }  \  { x  e.  B  |  ph } )
4 nfrab1 3122 . 2  |-  F/_ x { x  e.  ( A  \  B )  | 
ph }
5 eldif 3584 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
65anbi1i 731 . . . 4  |-  ( ( x  e.  ( A 
\  B )  /\  ph )  <->  ( ( x  e.  A  /\  -.  x  e.  B )  /\  ph ) )
7 andi 911 . . . . . . 7  |-  ( (
ph  /\  ( -.  x  e.  B  \/  -.  ph ) )  <->  ( ( ph  /\  -.  x  e.  B )  \/  ( ph  /\  -.  ph )
) )
8 pm3.24 926 . . . . . . . 8  |-  -.  ( ph  /\  -.  ph )
98biorfi 422 . . . . . . 7  |-  ( (
ph  /\  -.  x  e.  B )  <->  ( ( ph  /\  -.  x  e.  B )  \/  ( ph  /\  -.  ph )
) )
10 ancom 466 . . . . . . 7  |-  ( (
ph  /\  -.  x  e.  B )  <->  ( -.  x  e.  B  /\  ph ) )
117, 9, 103bitr2i 288 . . . . . 6  |-  ( (
ph  /\  ( -.  x  e.  B  \/  -.  ph ) )  <->  ( -.  x  e.  B  /\  ph ) )
1211anbi2i 730 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  /\  ( -.  x  e.  B  \/  -.  ph ) ) )  <-> 
( x  e.  A  /\  ( -.  x  e.  B  /\  ph )
) )
13 anass 681 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  /\  ( -.  x  e.  B  \/  -.  ph ) )  <-> 
( x  e.  A  /\  ( ph  /\  ( -.  x  e.  B  \/  -.  ph ) ) ) )
14 anass 681 . . . . 5  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  /\  ph )  <->  ( x  e.  A  /\  ( -.  x  e.  B  /\  ph ) ) )
1512, 13, 143bitr4i 292 . . . 4  |-  ( ( ( x  e.  A  /\  ph )  /\  ( -.  x  e.  B  \/  -.  ph ) )  <-> 
( ( x  e.  A  /\  -.  x  e.  B )  /\  ph ) )
166, 15bitr4i 267 . . 3  |-  ( ( x  e.  ( A 
\  B )  /\  ph )  <->  ( ( x  e.  A  /\  ph )  /\  ( -.  x  e.  B  \/  -.  ph ) ) )
17 rabid 3116 . . 3  |-  ( x  e.  { x  e.  ( A  \  B
)  |  ph }  <->  ( x  e.  ( A 
\  B )  /\  ph ) )
18 eldif 3584 . . . 4  |-  ( x  e.  ( { x  e.  A  |  ph }  \  { x  e.  B  |  ph } )  <->  ( x  e.  { x  e.  A  |  ph }  /\  -.  x  e.  { x  e.  B  |  ph }
) )
19 rabid 3116 . . . . 5  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
20 rabid 3116 . . . . . . 7  |-  ( x  e.  { x  e.  B  |  ph }  <->  ( x  e.  B  /\  ph ) )
2120notbii 310 . . . . . 6  |-  ( -.  x  e.  { x  e.  B  |  ph }  <->  -.  ( x  e.  B  /\  ph ) )
22 ianor 509 . . . . . 6  |-  ( -.  ( x  e.  B  /\  ph )  <->  ( -.  x  e.  B  \/  -.  ph ) )
2321, 22bitri 264 . . . . 5  |-  ( -.  x  e.  { x  e.  B  |  ph }  <->  ( -.  x  e.  B  \/  -.  ph ) )
2419, 23anbi12i 733 . . . 4  |-  ( ( x  e.  { x  e.  A  |  ph }  /\  -.  x  e.  {
x  e.  B  |  ph } )  <->  ( (
x  e.  A  /\  ph )  /\  ( -.  x  e.  B  \/  -.  ph ) ) )
2518, 24bitri 264 . . 3  |-  ( x  e.  ( { x  e.  A  |  ph }  \  { x  e.  B  |  ph } )  <->  ( (
x  e.  A  /\  ph )  /\  ( -.  x  e.  B  \/  -.  ph ) ) )
2616, 17, 253bitr4ri 293 . 2  |-  ( x  e.  ( { x  e.  A  |  ph }  \  { x  e.  B  |  ph } )  <->  x  e.  { x  e.  ( A 
\  B )  | 
ph } )
273, 4, 26eqri 29315 1  |-  ( { x  e.  A  |  ph }  \  { x  e.  B  |  ph }
)  =  { x  e.  ( A  \  B
)  |  ph }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577
This theorem is referenced by:  reprdifc  30705
  Copyright terms: Public domain W3C validator