| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equvinv | Structured version Visualization version Unicode version | ||
| Description: A variable introduction
law for equality. Lemma 15 of [Monk2] p. 109.
(Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2019,
ax-13 2246. (Revised by Wolf Lammen, 10-Jun-2019.)
Move the quantified
variable ( |
| Ref | Expression |
|---|---|
| equvinv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1890 |
. . 3
| |
| 2 | equtrr 1949 |
. . . . 5
| |
| 3 | 2 | ancld 576 |
. . . 4
|
| 4 | 3 | eximdv 1846 |
. . 3
|
| 5 | 1, 4 | mpi 20 |
. 2
|
| 6 | ax7 1943 |
. . . 4
| |
| 7 | 6 | imp 445 |
. . 3
|
| 8 | 7 | exlimiv 1858 |
. 2
|
| 9 | 5, 8 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: equvelv 1963 ax8 1996 ax9 2003 ax13 2249 wl-ax8clv1 33378 wl-ax8clv2 33381 |
| Copyright terms: Public domain | W3C validator |