MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvinv Structured version   Visualization version   Unicode version

Theorem equvinv 1959
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2019, ax-13 2246. (Revised by Wolf Lammen, 10-Jun-2019.) Move the quantified variable ( z) to the left of the equality signs. (Revised by Wolf Lammen, 11-Apr-2021.)
Assertion
Ref Expression
equvinv  |-  ( x  =  y  <->  E. z
( z  =  x  /\  z  =  y ) )
Distinct variable groups:    x, z    y, z

Proof of Theorem equvinv
StepHypRef Expression
1 ax6ev 1890 . . 3  |-  E. z 
z  =  x
2 equtrr 1949 . . . . 5  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
32ancld 576 . . . 4  |-  ( x  =  y  ->  (
z  =  x  -> 
( z  =  x  /\  z  =  y ) ) )
43eximdv 1846 . . 3  |-  ( x  =  y  ->  ( E. z  z  =  x  ->  E. z ( z  =  x  /\  z  =  y ) ) )
51, 4mpi 20 . 2  |-  ( x  =  y  ->  E. z
( z  =  x  /\  z  =  y ) )
6 ax7 1943 . . . 4  |-  ( z  =  x  ->  (
z  =  y  ->  x  =  y )
)
76imp 445 . . 3  |-  ( ( z  =  x  /\  z  =  y )  ->  x  =  y )
87exlimiv 1858 . 2  |-  ( E. z ( z  =  x  /\  z  =  y )  ->  x  =  y )
95, 8impbii 199 1  |-  ( x  =  y  <->  E. z
( z  =  x  /\  z  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  equvelv  1963  ax8  1996  ax9  2003  ax13  2249  wl-ax8clv1  33378  wl-ax8clv2  33381
  Copyright terms: Public domain W3C validator