MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvelv Structured version   Visualization version   Unicode version

Theorem equvelv 1963
Description: A specialized version of equvel 2347 with distinct variable restrictions and fewer axiom usage. (Contributed by Wolf Lammen, 10-Apr-2021.)
Assertion
Ref Expression
equvelv  |-  ( x  =  y  <->  A. z
( z  =  x  ->  z  =  y ) )
Distinct variable groups:    x, z    y, z

Proof of Theorem equvelv
StepHypRef Expression
1 equtrr 1949 . . 3  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
21alrimiv 1855 . 2  |-  ( x  =  y  ->  A. z
( z  =  x  ->  z  =  y ) )
3 equs4v 1930 . . 3  |-  ( A. z ( z  =  x  ->  z  =  y )  ->  E. z
( z  =  x  /\  z  =  y ) )
4 equvinv 1959 . . 3  |-  ( x  =  y  <->  E. z
( z  =  x  /\  z  =  y ) )
53, 4sylibr 224 . 2  |-  ( A. z ( z  =  x  ->  z  =  y )  ->  x  =  y )
62, 5impbii 199 1  |-  ( x  =  y  <->  A. z
( z  =  x  ->  z  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator