MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equvinvOLD Structured version   Visualization version   Unicode version

Theorem equvinvOLD 1962
Description: Obsolete version of equvinv 1959 as of 11-Apr-2021. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2019, ax-13 2246. (Revised by Wolf Lammen, 10-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equvinvOLD  |-  ( x  =  y  <->  E. z
( x  =  z  /\  y  =  z ) )
Distinct variable groups:    x, z    y, z

Proof of Theorem equvinvOLD
StepHypRef Expression
1 equviniva 1960 . 2  |-  ( x  =  y  ->  E. z
( x  =  z  /\  y  =  z ) )
2 equtrr 1949 . . . . 5  |-  ( z  =  y  ->  (
x  =  z  ->  x  =  y )
)
32equcoms 1947 . . . 4  |-  ( y  =  z  ->  (
x  =  z  ->  x  =  y )
)
43impcom 446 . . 3  |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )
54exlimiv 1858 . 2  |-  ( E. z ( x  =  z  /\  y  =  z )  ->  x  =  y )
61, 5impbii 199 1  |-  ( x  =  y  <->  E. z
( x  =  z  /\  y  =  z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator