| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eueq2 | Structured version Visualization version Unicode version | ||
| Description: Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
| Ref | Expression |
|---|---|
| eueq2.1 |
|
| eueq2.2 |
|
| Ref | Expression |
|---|---|
| eueq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 136 |
. . . 4
| |
| 2 | eueq2.1 |
. . . . . 6
| |
| 3 | 2 | eueq1 3379 |
. . . . 5
|
| 4 | euanv 2534 |
. . . . . 6
| |
| 5 | 4 | biimpri 218 |
. . . . 5
|
| 6 | 3, 5 | mpan2 707 |
. . . 4
|
| 7 | euorv 2513 |
. . . 4
| |
| 8 | 1, 6, 7 | syl2anc 693 |
. . 3
|
| 9 | orcom 402 |
. . . . 5
| |
| 10 | 1 | bianfd 967 |
. . . . . 6
|
| 11 | 10 | orbi2d 738 |
. . . . 5
|
| 12 | 9, 11 | syl5bb 272 |
. . . 4
|
| 13 | 12 | eubidv 2490 |
. . 3
|
| 14 | 8, 13 | mpbid 222 |
. 2
|
| 15 | eueq2.2 |
. . . . . 6
| |
| 16 | 15 | eueq1 3379 |
. . . . 5
|
| 17 | euanv 2534 |
. . . . . 6
| |
| 18 | 17 | biimpri 218 |
. . . . 5
|
| 19 | 16, 18 | mpan2 707 |
. . . 4
|
| 20 | euorv 2513 |
. . . 4
| |
| 21 | 19, 20 | mpdan 702 |
. . 3
|
| 22 | id 22 |
. . . . . 6
| |
| 23 | 22 | bianfd 967 |
. . . . 5
|
| 24 | 23 | orbi1d 739 |
. . . 4
|
| 25 | 24 | eubidv 2490 |
. . 3
|
| 26 | 21, 25 | mpbid 222 |
. 2
|
| 27 | 14, 26 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |