Proof of Theorem eueq2
| Step | Hyp | Ref
| Expression |
| 1 | | notnot 136 |
. . . 4
⊢ (𝜑 → ¬ ¬ 𝜑) |
| 2 | | eueq2.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
| 3 | 2 | eueq1 3379 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐴 |
| 4 | | euanv 2534 |
. . . . . 6
⊢
(∃!𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ (𝜑 ∧ ∃!𝑥 𝑥 = 𝐴)) |
| 5 | 4 | biimpri 218 |
. . . . 5
⊢ ((𝜑 ∧ ∃!𝑥 𝑥 = 𝐴) → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
| 6 | 3, 5 | mpan2 707 |
. . . 4
⊢ (𝜑 → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
| 7 | | euorv 2513 |
. . . 4
⊢ ((¬
¬ 𝜑 ∧ ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 8 | 1, 6, 7 | syl2anc 693 |
. . 3
⊢ (𝜑 → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
| 9 | | orcom 402 |
. . . . 5
⊢ ((¬
𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑)) |
| 10 | 1 | bianfd 967 |
. . . . . 6
⊢ (𝜑 → (¬ 𝜑 ↔ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 11 | 10 | orbi2d 738 |
. . . . 5
⊢ (𝜑 → (((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 12 | 9, 11 | syl5bb 272 |
. . . 4
⊢ (𝜑 → ((¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 13 | 12 | eubidv 2490 |
. . 3
⊢ (𝜑 → (∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 14 | 8, 13 | mpbid 222 |
. 2
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 15 | | eueq2.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 16 | 15 | eueq1 3379 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐵 |
| 17 | | euanv 2534 |
. . . . . 6
⊢
(∃!𝑥(¬
𝜑 ∧ 𝑥 = 𝐵) ↔ (¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵)) |
| 18 | 17 | biimpri 218 |
. . . . 5
⊢ ((¬
𝜑 ∧ ∃!𝑥 𝑥 = 𝐵) → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
| 19 | 16, 18 | mpan2 707 |
. . . 4
⊢ (¬
𝜑 → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
| 20 | | euorv 2513 |
. . . 4
⊢ ((¬
𝜑 ∧ ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 21 | 19, 20 | mpdan 702 |
. . 3
⊢ (¬
𝜑 → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 22 | | id 22 |
. . . . . 6
⊢ (¬
𝜑 → ¬ 𝜑) |
| 23 | 22 | bianfd 967 |
. . . . 5
⊢ (¬
𝜑 → (𝜑 ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
| 24 | 23 | orbi1d 739 |
. . . 4
⊢ (¬
𝜑 → ((𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 25 | 24 | eubidv 2490 |
. . 3
⊢ (¬
𝜑 → (∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
| 26 | 21, 25 | mpbid 222 |
. 2
⊢ (¬
𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
| 27 | 14, 26 | pm2.61i 176 |
1
⊢
∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) |