MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eueq3 Structured version   Visualization version   Unicode version

Theorem eueq3 3381
Description: Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.)
Hypotheses
Ref Expression
eueq3.1  |-  A  e. 
_V
eueq3.2  |-  B  e. 
_V
eueq3.3  |-  C  e. 
_V
eueq3.4  |-  -.  ( ph  /\  ps )
Assertion
Ref Expression
eueq3  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )
Distinct variable groups:    ph, x    ps, x    x, A    x, B    x, C

Proof of Theorem eueq3
StepHypRef Expression
1 eueq3.1 . . . 4  |-  A  e. 
_V
21eueq1 3379 . . 3  |-  E! x  x  =  A
3 ibar 525 . . . . . 6  |-  ( ph  ->  ( x  =  A  <-> 
( ph  /\  x  =  A ) ) )
4 pm2.45 412 . . . . . . . . . 10  |-  ( -.  ( ph  \/  ps )  ->  -.  ph )
5 eueq3.4 . . . . . . . . . . . 12  |-  -.  ( ph  /\  ps )
65imnani 439 . . . . . . . . . . 11  |-  ( ph  ->  -.  ps )
76con2i 134 . . . . . . . . . 10  |-  ( ps 
->  -.  ph )
84, 7jaoi 394 . . . . . . . . 9  |-  ( ( -.  ( ph  \/  ps )  \/  ps )  ->  -.  ph )
98con2i 134 . . . . . . . 8  |-  ( ph  ->  -.  ( -.  ( ph  \/  ps )  \/ 
ps ) )
104con2i 134 . . . . . . . . . 10  |-  ( ph  ->  -.  -.  ( ph  \/  ps ) )
1110bianfd 967 . . . . . . . . 9  |-  ( ph  ->  ( -.  ( ph  \/  ps )  <->  ( -.  ( ph  \/  ps )  /\  x  =  B
) ) )
126bianfd 967 . . . . . . . . 9  |-  ( ph  ->  ( ps  <->  ( ps  /\  x  =  C ) ) )
1311, 12orbi12d 746 . . . . . . . 8  |-  ( ph  ->  ( ( -.  ( ph  \/  ps )  \/ 
ps )  <->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) ) )
149, 13mtbid 314 . . . . . . 7  |-  ( ph  ->  -.  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
15 biorf 420 . . . . . . 7  |-  ( -.  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  -> 
( ( ph  /\  x  =  A )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
1614, 15syl 17 . . . . . 6  |-  ( ph  ->  ( ( ph  /\  x  =  A )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
173, 16bitrd 268 . . . . 5  |-  ( ph  ->  ( x  =  A  <-> 
( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) ) )
18 3orrot 1044 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C )  \/  ( ph  /\  x  =  A ) ) )
19 df-3or 1038 . . . . . 6  |-  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C )  \/  ( ph  /\  x  =  A ) )  <->  ( ( ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) )
2018, 19bitri 264 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )  \/  ( ph  /\  x  =  A ) ) )
2117, 20syl6bbr 278 . . . 4  |-  ( ph  ->  ( x  =  A  <-> 
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
2221eubidv 2490 . . 3  |-  ( ph  ->  ( E! x  x  =  A  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
232, 22mpbii 223 . 2  |-  ( ph  ->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
24 eueq3.3 . . . 4  |-  C  e. 
_V
2524eueq1 3379 . . 3  |-  E! x  x  =  C
26 ibar 525 . . . . . 6  |-  ( ps 
->  ( x  =  C  <-> 
( ps  /\  x  =  C ) ) )
276adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  -.  ps )
28 pm2.46 413 . . . . . . . . . 10  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
2928adantr 481 . . . . . . . . 9  |-  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  ->  -.  ps )
3027, 29jaoi 394 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  ->  -.  ps )
3130con2i 134 . . . . . . 7  |-  ( ps 
->  -.  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )
) )
32 biorf 420 . . . . . . 7  |-  ( -.  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  -> 
( ( ps  /\  x  =  C )  <->  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) ) )
3331, 32syl 17 . . . . . 6  |-  ( ps 
->  ( ( ps  /\  x  =  C )  <->  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) ) )
3426, 33bitrd 268 . . . . 5  |-  ( ps 
->  ( x  =  C  <-> 
( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )
)  \/  ( ps 
/\  x  =  C ) ) ) )
35 df-3or 1038 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  \/  ( ps  /\  x  =  C ) ) )
3634, 35syl6bbr 278 . . . 4  |-  ( ps 
->  ( x  =  C  <-> 
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
3736eubidv 2490 . . 3  |-  ( ps 
->  ( E! x  x  =  C  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
3825, 37mpbii 223 . 2  |-  ( ps 
->  E! x ( (
ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
39 eueq3.2 . . . 4  |-  B  e. 
_V
4039eueq1 3379 . . 3  |-  E! x  x  =  B
41 ibar 525 . . . . . 6  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( -.  ( ph  \/  ps )  /\  x  =  B )
) )
42 simpl 473 . . . . . . . . 9  |-  ( (
ph  /\  x  =  A )  ->  ph )
43 simpl 473 . . . . . . . . 9  |-  ( ( ps  /\  x  =  C )  ->  ps )
4442, 43orim12i 538 . . . . . . . 8  |-  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  ->  ( ph  \/  ps ) )
4544con3i 150 . . . . . . 7  |-  ( -.  ( ph  \/  ps )  ->  -.  ( ( ph  /\  x  =  A )  \/  ( ps 
/\  x  =  C ) ) )
46 biorf 420 . . . . . . 7  |-  ( -.  ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  -> 
( ( -.  ( ph  \/  ps )  /\  x  =  B )  <->  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
4745, 46syl 17 . . . . . 6  |-  ( -.  ( ph  \/  ps )  ->  ( ( -.  ( ph  \/  ps )  /\  x  =  B )  <->  ( ( (
ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
4841, 47bitrd 268 . . . . 5  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( ( (
ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) ) )
49 3orcomb 1048 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( ( ph  /\  x  =  A )  \/  ( ps 
/\  x  =  C )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
50 df-3or 1038 . . . . . 6  |-  ( ( ( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
5149, 50bitri 264 . . . . 5  |-  ( ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) )  <->  ( (
( ph  /\  x  =  A )  \/  ( ps  /\  x  =  C ) )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B ) ) )
5248, 51syl6bbr 278 . . . 4  |-  ( -.  ( ph  \/  ps )  ->  ( x  =  B  <->  ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
5352eubidv 2490 . . 3  |-  ( -.  ( ph  \/  ps )  ->  ( E! x  x  =  B  <->  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) ) ) )
5440, 53mpbii 223 . 2  |-  ( -.  ( ph  \/  ps )  ->  E! x ( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps 
/\  x  =  C ) ) )
5523, 38, 54ecase3 982 1  |-  E! x
( ( ph  /\  x  =  A )  \/  ( -.  ( ph  \/  ps )  /\  x  =  B )  \/  ( ps  /\  x  =  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   E!weu 2470   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  moeq3  3383
  Copyright terms: Public domain W3C validator