| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusvnf | Structured version Visualization version Unicode version | ||
| Description: Even if |
| Ref | Expression |
|---|---|
| eusvnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2494 |
. 2
| |
| 2 | vex 3203 |
. . . . . . 7
| |
| 3 | nfcv 2764 |
. . . . . . . 8
| |
| 4 | nfcsb1v 3549 |
. . . . . . . . 9
| |
| 5 | 4 | nfeq2 2780 |
. . . . . . . 8
|
| 6 | csbeq1a 3542 |
. . . . . . . . 9
| |
| 7 | 6 | eqeq2d 2632 |
. . . . . . . 8
|
| 8 | 3, 5, 7 | spcgf 3288 |
. . . . . . 7
|
| 9 | 2, 8 | ax-mp 5 |
. . . . . 6
|
| 10 | vex 3203 |
. . . . . . 7
| |
| 11 | nfcv 2764 |
. . . . . . . 8
| |
| 12 | nfcsb1v 3549 |
. . . . . . . . 9
| |
| 13 | 12 | nfeq2 2780 |
. . . . . . . 8
|
| 14 | csbeq1a 3542 |
. . . . . . . . 9
| |
| 15 | 14 | eqeq2d 2632 |
. . . . . . . 8
|
| 16 | 11, 13, 15 | spcgf 3288 |
. . . . . . 7
|
| 17 | 10, 16 | ax-mp 5 |
. . . . . 6
|
| 18 | 9, 17 | eqtr3d 2658 |
. . . . 5
|
| 19 | 18 | alrimivv 1856 |
. . . 4
|
| 20 | sbnfc2 4007 |
. . . 4
| |
| 21 | 19, 20 | sylibr 224 |
. . 3
|
| 22 | 21 | exlimiv 1858 |
. 2
|
| 23 | 1, 22 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: eusvnfb 4862 eusv2i 4863 |
| Copyright terms: Public domain | W3C validator |