| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusvnfb | Structured version Visualization version Unicode version | ||
| Description: Two ways to say that |
| Ref | Expression |
|---|---|
| eusvnfb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eusvnf 4861 |
. . 3
| |
| 2 | euex 2494 |
. . . 4
| |
| 3 | eqvisset 3211 |
. . . . . 6
| |
| 4 | 3 | sps 2055 |
. . . . 5
|
| 5 | 4 | exlimiv 1858 |
. . . 4
|
| 6 | 2, 5 | syl 17 |
. . 3
|
| 7 | 1, 6 | jca 554 |
. 2
|
| 8 | isset 3207 |
. . . . 5
| |
| 9 | nfcvd 2765 |
. . . . . . . 8
| |
| 10 | id 22 |
. . . . . . . 8
| |
| 11 | 9, 10 | nfeqd 2772 |
. . . . . . 7
|
| 12 | 11 | nf5rd 2066 |
. . . . . 6
|
| 13 | 12 | eximdv 1846 |
. . . . 5
|
| 14 | 8, 13 | syl5bi 232 |
. . . 4
|
| 15 | 14 | imp 445 |
. . 3
|
| 16 | eusv1 4860 |
. . 3
| |
| 17 | 15, 16 | sylibr 224 |
. 2
|
| 18 | 7, 17 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: eusv2nf 4864 eusv2 4865 |
| Copyright terms: Public domain | W3C validator |