MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvnfb Structured version   Visualization version   Unicode version

Theorem eusvnfb 4862
Description: Two ways to say that  A ( x ) is a set expression that does not depend on  x. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 4861 . . 3  |-  ( E! y A. x  y  =  A  ->  F/_ x A )
2 euex 2494 . . . 4  |-  ( E! y A. x  y  =  A  ->  E. y A. x  y  =  A )
3 eqvisset 3211 . . . . . 6  |-  ( y  =  A  ->  A  e.  _V )
43sps 2055 . . . . 5  |-  ( A. x  y  =  A  ->  A  e.  _V )
54exlimiv 1858 . . . 4  |-  ( E. y A. x  y  =  A  ->  A  e.  _V )
62, 5syl 17 . . 3  |-  ( E! y A. x  y  =  A  ->  A  e.  _V )
71, 6jca 554 . 2  |-  ( E! y A. x  y  =  A  ->  ( F/_ x A  /\  A  e.  _V ) )
8 isset 3207 . . . . 5  |-  ( A  e.  _V  <->  E. y 
y  =  A )
9 nfcvd 2765 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x
y )
10 id 22 . . . . . . . 8  |-  ( F/_ x A  ->  F/_ x A )
119, 10nfeqd 2772 . . . . . . 7  |-  ( F/_ x A  ->  F/ x  y  =  A )
1211nf5rd 2066 . . . . . 6  |-  ( F/_ x A  ->  ( y  =  A  ->  A. x  y  =  A )
)
1312eximdv 1846 . . . . 5  |-  ( F/_ x A  ->  ( E. y  y  =  A  ->  E. y A. x  y  =  A )
)
148, 13syl5bi 232 . . . 4  |-  ( F/_ x A  ->  ( A  e.  _V  ->  E. y A. x  y  =  A ) )
1514imp 445 . . 3  |-  ( (
F/_ x A  /\  A  e.  _V )  ->  E. y A. x  y  =  A )
16 eusv1 4860 . . 3  |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
1715, 16sylibr 224 . 2  |-  ( (
F/_ x A  /\  A  e.  _V )  ->  E! y A. x  y  =  A )
187, 17impbii 199 1  |-  ( E! y A. x  y  =  A  <->  ( F/_ x A  /\  A  e. 
_V ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   E!weu 2470   F/_wnfc 2751   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916
This theorem is referenced by:  eusv2nf  4864  eusv2  4865
  Copyright terms: Public domain W3C validator