MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsb Structured version   Visualization version   Unicode version

Theorem exsb 2468
Description: An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
Assertion
Ref Expression
exsb  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem exsb
StepHypRef Expression
1 nfv 1843 . 2  |-  F/ y
ph
2 nfa1 2028 . 2  |-  F/ x A. x ( x  =  y  ->  ph )
3 ax12v 2048 . . 3  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
4 sp 2053 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
54com12 32 . . 3  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
63, 5impbid 202 . 2  |-  ( x  =  y  ->  ( ph 
<-> 
A. x ( x  =  y  ->  ph )
) )
71, 2, 6cbvex 2272 1  |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator