| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2sb8e | Structured version Visualization version Unicode version | ||
| Description: An equivalent expression for double existence. (Contributed by Wolf Lammen, 2-Nov-2019.) |
| Ref | Expression |
|---|---|
| 2sb8e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . . . 5
| |
| 2 | 1 | sb8e 2425 |
. . . 4
|
| 3 | 2 | exbii 1774 |
. . 3
|
| 4 | excom 2042 |
. . 3
| |
| 5 | 3, 4 | bitri 264 |
. 2
|
| 6 | nfv 1843 |
. . . . 5
| |
| 7 | 6 | nfsb 2440 |
. . . 4
|
| 8 | 7 | sb8e 2425 |
. . 3
|
| 9 | 8 | exbii 1774 |
. 2
|
| 10 | excom 2042 |
. 2
| |
| 11 | 5, 9, 10 | 3bitri 286 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: 2exsb 2469 2mo 2551 |
| Copyright terms: Public domain | W3C validator |