MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exsb Structured version   Visualization version   Unicode version

Theorem 2exsb 2469
Description: An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
Assertion
Ref Expression
2exsb  |-  ( E. x E. y ph  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph ) )
Distinct variable groups:    x, y,
z    y, w, z    ph, z, w
Allowed substitution hints:    ph( x, y)

Proof of Theorem 2exsb
StepHypRef Expression
1 2sb8e 2467 . 2  |-  ( E. x E. y ph  <->  E. z E. w [
z  /  x ] [ w  /  y ] ph )
2 2sb6 2444 . . 3  |-  ( [ z  /  x ] [ w  /  y ] ph  <->  A. x A. y
( ( x  =  z  /\  y  =  w )  ->  ph )
)
322exbii 1775 . 2  |-  ( E. z E. w [
z  /  x ] [ w  /  y ] ph  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph ) )
41, 3bitri 264 1  |-  ( E. x E. y ph  <->  E. z E. w A. x A. y ( ( x  =  z  /\  y  =  w )  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  2eu6  2558
  Copyright terms: Public domain W3C validator