MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssr Structured version   Visualization version   Unicode version

Theorem f1ssr 6107
Description: A function that is one-to-one is also one-to-one on some superset of its range. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Assertion
Ref Expression
f1ssr  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  F : A -1-1-> C )

Proof of Theorem f1ssr
StepHypRef Expression
1 f1fn 6102 . . . 4  |-  ( F : A -1-1-> B  ->  F  Fn  A )
21adantr 481 . . 3  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  F  Fn  A )
3 simpr 477 . . 3  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  ran  F  C_  C )
4 df-f 5892 . . 3  |-  ( F : A --> C  <->  ( F  Fn  A  /\  ran  F  C_  C ) )
52, 3, 4sylanbrc 698 . 2  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  F : A
--> C )
6 df-f1 5893 . . . 4  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
76simprbi 480 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' F )
87adantr 481 . 2  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  Fun  `' F
)
9 df-f1 5893 . 2  |-  ( F : A -1-1-> C  <->  ( F : A --> C  /\  Fun  `' F ) )
105, 8, 9sylanbrc 698 1  |-  ( ( F : A -1-1-> B  /\  ran  F  C_  C
)  ->  F : A -1-1-> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    C_ wss 3574   `'ccnv 5113   ran crn 5115   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-f 5892  df-f1 5893
This theorem is referenced by:  domdifsn  8043  marypha1  8340  m2cpmf1  20548  ausgrusgri  26063  uspgrupgrushgr  26072  usgrumgruspgr  26075  usgruspgrb  26076  usgrres  26200  usgrres1  26207
  Copyright terms: Public domain W3C validator